diff -r d59bea55db9b -r c445c931472f src/glpapi08.c --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/glpapi08.c Mon Dec 06 13:09:21 2010 +0100 @@ -0,0 +1,389 @@ +/* glpapi08.c (interior-point method routines) */ + +/*********************************************************************** +* This code is part of GLPK (GNU Linear Programming Kit). +* +* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, +* 2009, 2010 Andrew Makhorin, Department for Applied Informatics, +* Moscow Aviation Institute, Moscow, Russia. All rights reserved. +* E-mail: . +* +* GLPK is free software: you can redistribute it and/or modify it +* under the terms of the GNU General Public License as published by +* the Free Software Foundation, either version 3 of the License, or +* (at your option) any later version. +* +* GLPK is distributed in the hope that it will be useful, but WITHOUT +* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY +* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public +* License for more details. +* +* You should have received a copy of the GNU General Public License +* along with GLPK. If not, see . +***********************************************************************/ + +#include "glpapi.h" +#include "glpipm.h" +#include "glpnpp.h" + +/*********************************************************************** +* NAME +* +* glp_interior - solve LP problem with the interior-point method +* +* SYNOPSIS +* +* int glp_interior(glp_prob *P, const glp_iptcp *parm); +* +* The routine glp_interior is a driver to the LP solver based on the +* interior-point method. +* +* The interior-point solver has a set of control parameters. Values of +* the control parameters can be passed in a structure glp_iptcp, which +* the parameter parm points to. +* +* Currently this routine implements an easy variant of the primal-dual +* interior-point method based on Mehrotra's technique. +* +* This routine transforms the original LP problem to an equivalent LP +* problem in the standard formulation (all constraints are equalities, +* all variables are non-negative), calls the routine ipm_main to solve +* the transformed problem, and then transforms an obtained solution to +* the solution of the original problem. +* +* RETURNS +* +* 0 The LP problem instance has been successfully solved. This code +* does not necessarily mean that the solver has found optimal +* solution. It only means that the solution process was successful. +* +* GLP_EFAIL +* The problem has no rows/columns. +* +* GLP_ENOCVG +* Very slow convergence or divergence. +* +* GLP_EITLIM +* Iteration limit exceeded. +* +* GLP_EINSTAB +* Numerical instability on solving Newtonian system. */ + +static void transform(NPP *npp) +{ /* transform LP to the standard formulation */ + NPPROW *row, *prev_row; + NPPCOL *col, *prev_col; + for (row = npp->r_tail; row != NULL; row = prev_row) + { prev_row = row->prev; + if (row->lb == -DBL_MAX && row->ub == +DBL_MAX) + npp_free_row(npp, row); + else if (row->lb == -DBL_MAX) + npp_leq_row(npp, row); + else if (row->ub == +DBL_MAX) + npp_geq_row(npp, row); + else if (row->lb != row->ub) + { if (fabs(row->lb) < fabs(row->ub)) + npp_geq_row(npp, row); + else + npp_leq_row(npp, row); + } + } + for (col = npp->c_tail; col != NULL; col = prev_col) + { prev_col = col->prev; + if (col->lb == -DBL_MAX && col->ub == +DBL_MAX) + npp_free_col(npp, col); + else if (col->lb == -DBL_MAX) + npp_ubnd_col(npp, col); + else if (col->ub == +DBL_MAX) + { if (col->lb != 0.0) + npp_lbnd_col(npp, col); + } + else if (col->lb != col->ub) + { if (fabs(col->lb) < fabs(col->ub)) + { if (col->lb != 0.0) + npp_lbnd_col(npp, col); + } + else + npp_ubnd_col(npp, col); + npp_dbnd_col(npp, col); + } + else + npp_fixed_col(npp, col); + } + for (row = npp->r_head; row != NULL; row = row->next) + xassert(row->lb == row->ub); + for (col = npp->c_head; col != NULL; col = col->next) + xassert(col->lb == 0.0 && col->ub == +DBL_MAX); + return; +} + +int glp_interior(glp_prob *P, const glp_iptcp *parm) +{ glp_iptcp _parm; + GLPROW *row; + GLPCOL *col; + NPP *npp = NULL; + glp_prob *prob = NULL; + int i, j, ret; + /* check control parameters */ + if (parm == NULL) + glp_init_iptcp(&_parm), parm = &_parm; + if (!(parm->msg_lev == GLP_MSG_OFF || + parm->msg_lev == GLP_MSG_ERR || + parm->msg_lev == GLP_MSG_ON || + parm->msg_lev == GLP_MSG_ALL)) + xerror("glp_interior: msg_lev = %d; invalid parameter\n", + parm->msg_lev); + if (!(parm->ord_alg == GLP_ORD_NONE || + parm->ord_alg == GLP_ORD_QMD || + parm->ord_alg == GLP_ORD_AMD || + parm->ord_alg == GLP_ORD_SYMAMD)) + xerror("glp_interior: ord_alg = %d; invalid parameter\n", + parm->ord_alg); + /* interior-point solution is currently undefined */ + P->ipt_stat = GLP_UNDEF; + P->ipt_obj = 0.0; + /* check bounds of double-bounded variables */ + for (i = 1; i <= P->m; i++) + { row = P->row[i]; + if (row->type == GLP_DB && row->lb >= row->ub) + { if (parm->msg_lev >= GLP_MSG_ERR) + xprintf("glp_interior: row %d: lb = %g, ub = %g; incorre" + "ct bounds\n", i, row->lb, row->ub); + ret = GLP_EBOUND; + goto done; + } + } + for (j = 1; j <= P->n; j++) + { col = P->col[j]; + if (col->type == GLP_DB && col->lb >= col->ub) + { if (parm->msg_lev >= GLP_MSG_ERR) + xprintf("glp_interior: column %d: lb = %g, ub = %g; inco" + "rrect bounds\n", j, col->lb, col->ub); + ret = GLP_EBOUND; + goto done; + } + } + /* transform LP to the standard formulation */ + if (parm->msg_lev >= GLP_MSG_ALL) + xprintf("Original LP has %d row(s), %d column(s), and %d non-z" + "ero(s)\n", P->m, P->n, P->nnz); + npp = npp_create_wksp(); + npp_load_prob(npp, P, GLP_OFF, GLP_IPT, GLP_ON); + transform(npp); + prob = glp_create_prob(); + npp_build_prob(npp, prob); + if (parm->msg_lev >= GLP_MSG_ALL) + xprintf("Working LP has %d row(s), %d column(s), and %d non-ze" + "ro(s)\n", prob->m, prob->n, prob->nnz); +#if 1 + /* currently empty problem cannot be solved */ + if (!(prob->m > 0 && prob->n > 0)) + { if (parm->msg_lev >= GLP_MSG_ERR) + xprintf("glp_interior: unable to solve empty problem\n"); + ret = GLP_EFAIL; + goto done; + } +#endif + /* scale the resultant LP */ + { ENV *env = get_env_ptr(); + int term_out = env->term_out; + env->term_out = GLP_OFF; + glp_scale_prob(prob, GLP_SF_EQ); + env->term_out = term_out; + } + /* warn about dense columns */ + if (parm->msg_lev >= GLP_MSG_ON && prob->m >= 200) + { int len, cnt = 0; + for (j = 1; j <= prob->n; j++) + { len = glp_get_mat_col(prob, j, NULL, NULL); + if ((double)len >= 0.20 * (double)prob->m) cnt++; + } + if (cnt == 1) + xprintf("WARNING: PROBLEM HAS ONE DENSE COLUMN\n"); + else if (cnt > 0) + xprintf("WARNING: PROBLEM HAS %d DENSE COLUMNS\n", cnt); + } + /* solve the transformed LP */ + ret = ipm_solve(prob, parm); + /* postprocess solution from the transformed LP */ + npp_postprocess(npp, prob); + /* and store solution to the original LP */ + npp_unload_sol(npp, P); +done: /* free working program objects */ + if (npp != NULL) npp_delete_wksp(npp); + if (prob != NULL) glp_delete_prob(prob); + /* return to the application program */ + return ret; +} + +/*********************************************************************** +* NAME +* +* glp_init_iptcp - initialize interior-point solver control parameters +* +* SYNOPSIS +* +* void glp_init_iptcp(glp_iptcp *parm); +* +* DESCRIPTION +* +* The routine glp_init_iptcp initializes control parameters, which are +* used by the interior-point solver, with default values. +* +* Default values of the control parameters are stored in the glp_iptcp +* structure, which the parameter parm points to. */ + +void glp_init_iptcp(glp_iptcp *parm) +{ parm->msg_lev = GLP_MSG_ALL; + parm->ord_alg = GLP_ORD_AMD; + return; +} + +/*********************************************************************** +* NAME +* +* glp_ipt_status - retrieve status of interior-point solution +* +* SYNOPSIS +* +* int glp_ipt_status(glp_prob *lp); +* +* RETURNS +* +* The routine glp_ipt_status reports the status of solution found by +* the interior-point solver as follows: +* +* GLP_UNDEF - interior-point solution is undefined; +* GLP_OPT - interior-point solution is optimal; +* GLP_INFEAS - interior-point solution is infeasible; +* GLP_NOFEAS - no feasible solution exists. */ + +int glp_ipt_status(glp_prob *lp) +{ int ipt_stat = lp->ipt_stat; + return ipt_stat; +} + +/*********************************************************************** +* NAME +* +* glp_ipt_obj_val - retrieve objective value (interior point) +* +* SYNOPSIS +* +* double glp_ipt_obj_val(glp_prob *lp); +* +* RETURNS +* +* The routine glp_ipt_obj_val returns value of the objective function +* for interior-point solution. */ + +double glp_ipt_obj_val(glp_prob *lp) +{ /*struct LPXCPS *cps = lp->cps;*/ + double z; + z = lp->ipt_obj; + /*if (cps->round && fabs(z) < 1e-9) z = 0.0;*/ + return z; +} + +/*********************************************************************** +* NAME +* +* glp_ipt_row_prim - retrieve row primal value (interior point) +* +* SYNOPSIS +* +* double glp_ipt_row_prim(glp_prob *lp, int i); +* +* RETURNS +* +* The routine glp_ipt_row_prim returns primal value of the auxiliary +* variable associated with i-th row. */ + +double glp_ipt_row_prim(glp_prob *lp, int i) +{ /*struct LPXCPS *cps = lp->cps;*/ + double pval; + if (!(1 <= i && i <= lp->m)) + xerror("glp_ipt_row_prim: i = %d; row number out of range\n", + i); + pval = lp->row[i]->pval; + /*if (cps->round && fabs(pval) < 1e-9) pval = 0.0;*/ + return pval; +} + +/*********************************************************************** +* NAME +* +* glp_ipt_row_dual - retrieve row dual value (interior point) +* +* SYNOPSIS +* +* double glp_ipt_row_dual(glp_prob *lp, int i); +* +* RETURNS +* +* The routine glp_ipt_row_dual returns dual value (i.e. reduced cost) +* of the auxiliary variable associated with i-th row. */ + +double glp_ipt_row_dual(glp_prob *lp, int i) +{ /*struct LPXCPS *cps = lp->cps;*/ + double dval; + if (!(1 <= i && i <= lp->m)) + xerror("glp_ipt_row_dual: i = %d; row number out of range\n", + i); + dval = lp->row[i]->dval; + /*if (cps->round && fabs(dval) < 1e-9) dval = 0.0;*/ + return dval; +} + +/*********************************************************************** +* NAME +* +* glp_ipt_col_prim - retrieve column primal value (interior point) +* +* SYNOPSIS +* +* double glp_ipt_col_prim(glp_prob *lp, int j); +* +* RETURNS +* +* The routine glp_ipt_col_prim returns primal value of the structural +* variable associated with j-th column. */ + +double glp_ipt_col_prim(glp_prob *lp, int j) +{ /*struct LPXCPS *cps = lp->cps;*/ + double pval; + if (!(1 <= j && j <= lp->n)) + xerror("glp_ipt_col_prim: j = %d; column number out of range\n" + , j); + pval = lp->col[j]->pval; + /*if (cps->round && fabs(pval) < 1e-9) pval = 0.0;*/ + return pval; +} + +/*********************************************************************** +* NAME +* +* glp_ipt_col_dual - retrieve column dual value (interior point) +* +* SYNOPSIS +* +* #include "glplpx.h" +* double glp_ipt_col_dual(glp_prob *lp, int j); +* +* RETURNS +* +* The routine glp_ipt_col_dual returns dual value (i.e. reduced cost) +* of the structural variable associated with j-th column. */ + +double glp_ipt_col_dual(glp_prob *lp, int j) +{ /*struct LPXCPS *cps = lp->cps;*/ + double dval; + if (!(1 <= j && j <= lp->n)) + xerror("glp_ipt_col_dual: j = %d; column number out of range\n" + , j); + dval = lp->col[j]->dval; + /*if (cps->round && fabs(dval) < 1e-9) dval = 0.0;*/ + return dval; +} + +/* eof */