diff -r d59bea55db9b -r c445c931472f src/glpios06.c --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/glpios06.c Mon Dec 06 13:09:21 2010 +0100 @@ -0,0 +1,1447 @@ +/* glpios06.c (MIR cut generator) */ + +/*********************************************************************** +* This code is part of GLPK (GNU Linear Programming Kit). +* +* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, +* 2009, 2010 Andrew Makhorin, Department for Applied Informatics, +* Moscow Aviation Institute, Moscow, Russia. All rights reserved. +* E-mail: . +* +* GLPK is free software: you can redistribute it and/or modify it +* under the terms of the GNU General Public License as published by +* the Free Software Foundation, either version 3 of the License, or +* (at your option) any later version. +* +* GLPK is distributed in the hope that it will be useful, but WITHOUT +* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY +* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public +* License for more details. +* +* You should have received a copy of the GNU General Public License +* along with GLPK. If not, see . +***********************************************************************/ + +#include "glpios.h" + +#define _MIR_DEBUG 0 + +#define MAXAGGR 5 +/* maximal number of rows which can be aggregated */ + +struct MIR +{ /* MIR cut generator working area */ + /*--------------------------------------------------------------*/ + /* global information valid for the root subproblem */ + int m; + /* number of rows (in the root subproblem) */ + int n; + /* number of columns */ + char *skip; /* char skip[1+m]; */ + /* skip[i], 1 <= i <= m, is a flag that means that row i should + not be used because (1) it is not suitable, or (2) because it + has been used in the aggregated constraint */ + char *isint; /* char isint[1+m+n]; */ + /* isint[k], 1 <= k <= m+n, is a flag that means that variable + x[k] is integer (otherwise, continuous) */ + double *lb; /* double lb[1+m+n]; */ + /* lb[k], 1 <= k <= m+n, is lower bound of x[k]; -DBL_MAX means + that x[k] has no lower bound */ + int *vlb; /* int vlb[1+m+n]; */ + /* vlb[k] = k', 1 <= k <= m+n, is the number of integer variable, + which defines variable lower bound x[k] >= lb[k] * x[k']; zero + means that x[k] has simple lower bound */ + double *ub; /* double ub[1+m+n]; */ + /* ub[k], 1 <= k <= m+n, is upper bound of x[k]; +DBL_MAX means + that x[k] has no upper bound */ + int *vub; /* int vub[1+m+n]; */ + /* vub[k] = k', 1 <= k <= m+n, is the number of integer variable, + which defines variable upper bound x[k] <= ub[k] * x[k']; zero + means that x[k] has simple upper bound */ + /*--------------------------------------------------------------*/ + /* current (fractional) point to be separated */ + double *x; /* double x[1+m+n]; */ + /* x[k] is current value of auxiliary (1 <= k <= m) or structural + (m+1 <= k <= m+n) variable */ + /*--------------------------------------------------------------*/ + /* aggregated constraint sum a[k] * x[k] = b, which is a linear + combination of original constraints transformed to equalities + by introducing auxiliary variables */ + int agg_cnt; + /* number of rows (original constraints) used to build aggregated + constraint, 1 <= agg_cnt <= MAXAGGR */ + int *agg_row; /* int agg_row[1+MAXAGGR]; */ + /* agg_row[k], 1 <= k <= agg_cnt, is the row number used to build + aggregated constraint */ + IOSVEC *agg_vec; /* IOSVEC agg_vec[1:m+n]; */ + /* sparse vector of aggregated constraint coefficients, a[k] */ + double agg_rhs; + /* right-hand side of the aggregated constraint, b */ + /*--------------------------------------------------------------*/ + /* bound substitution flags for modified constraint */ + char *subst; /* char subst[1+m+n]; */ + /* subst[k], 1 <= k <= m+n, is a bound substitution flag used for + variable x[k]: + '?' - x[k] is missing in modified constraint + 'L' - x[k] = (lower bound) + x'[k] + 'U' - x[k] = (upper bound) - x'[k] */ + /*--------------------------------------------------------------*/ + /* modified constraint sum a'[k] * x'[k] = b', where x'[k] >= 0, + derived from aggregated constraint by substituting bounds; + note that due to substitution of variable bounds there may be + additional terms in the modified constraint */ + IOSVEC *mod_vec; /* IOSVEC mod_vec[1:m+n]; */ + /* sparse vector of modified constraint coefficients, a'[k] */ + double mod_rhs; + /* right-hand side of the modified constraint, b' */ + /*--------------------------------------------------------------*/ + /* cutting plane sum alpha[k] * x[k] <= beta */ + IOSVEC *cut_vec; /* IOSVEC cut_vec[1:m+n]; */ + /* sparse vector of cutting plane coefficients, alpha[k] */ + double cut_rhs; + /* right-hand size of the cutting plane, beta */ +}; + +/*********************************************************************** +* NAME +* +* ios_mir_init - initialize MIR cut generator +* +* SYNOPSIS +* +* #include "glpios.h" +* void *ios_mir_init(glp_tree *tree); +* +* DESCRIPTION +* +* The routine ios_mir_init initializes the MIR cut generator assuming +* that the current subproblem is the root subproblem. +* +* RETURNS +* +* The routine ios_mir_init returns a pointer to the MIR cut generator +* working area. */ + +static void set_row_attrib(glp_tree *tree, struct MIR *mir) +{ /* set global row attributes */ + glp_prob *mip = tree->mip; + int m = mir->m; + int k; + for (k = 1; k <= m; k++) + { GLPROW *row = mip->row[k]; + mir->skip[k] = 0; + mir->isint[k] = 0; + switch (row->type) + { case GLP_FR: + mir->lb[k] = -DBL_MAX, mir->ub[k] = +DBL_MAX; break; + case GLP_LO: + mir->lb[k] = row->lb, mir->ub[k] = +DBL_MAX; break; + case GLP_UP: + mir->lb[k] = -DBL_MAX, mir->ub[k] = row->ub; break; + case GLP_DB: + mir->lb[k] = row->lb, mir->ub[k] = row->ub; break; + case GLP_FX: + mir->lb[k] = mir->ub[k] = row->lb; break; + default: + xassert(row != row); + } + mir->vlb[k] = mir->vub[k] = 0; + } + return; +} + +static void set_col_attrib(glp_tree *tree, struct MIR *mir) +{ /* set global column attributes */ + glp_prob *mip = tree->mip; + int m = mir->m; + int n = mir->n; + int k; + for (k = m+1; k <= m+n; k++) + { GLPCOL *col = mip->col[k-m]; + switch (col->kind) + { case GLP_CV: + mir->isint[k] = 0; break; + case GLP_IV: + mir->isint[k] = 1; break; + default: + xassert(col != col); + } + switch (col->type) + { case GLP_FR: + mir->lb[k] = -DBL_MAX, mir->ub[k] = +DBL_MAX; break; + case GLP_LO: + mir->lb[k] = col->lb, mir->ub[k] = +DBL_MAX; break; + case GLP_UP: + mir->lb[k] = -DBL_MAX, mir->ub[k] = col->ub; break; + case GLP_DB: + mir->lb[k] = col->lb, mir->ub[k] = col->ub; break; + case GLP_FX: + mir->lb[k] = mir->ub[k] = col->lb; break; + default: + xassert(col != col); + } + mir->vlb[k] = mir->vub[k] = 0; + } + return; +} + +static void set_var_bounds(glp_tree *tree, struct MIR *mir) +{ /* set variable bounds */ + glp_prob *mip = tree->mip; + int m = mir->m; + GLPAIJ *aij; + int i, k1, k2; + double a1, a2; + for (i = 1; i <= m; i++) + { /* we need the row to be '>= 0' or '<= 0' */ + if (!(mir->lb[i] == 0.0 && mir->ub[i] == +DBL_MAX || + mir->lb[i] == -DBL_MAX && mir->ub[i] == 0.0)) continue; + /* take first term */ + aij = mip->row[i]->ptr; + if (aij == NULL) continue; + k1 = m + aij->col->j, a1 = aij->val; + /* take second term */ + aij = aij->r_next; + if (aij == NULL) continue; + k2 = m + aij->col->j, a2 = aij->val; + /* there must be only two terms */ + if (aij->r_next != NULL) continue; + /* interchange terms, if needed */ + if (!mir->isint[k1] && mir->isint[k2]) + ; + else if (mir->isint[k1] && !mir->isint[k2]) + { k2 = k1, a2 = a1; + k1 = m + aij->col->j, a1 = aij->val; + } + else + { /* both terms are either continuous or integer */ + continue; + } + /* x[k2] should be double-bounded */ + if (mir->lb[k2] == -DBL_MAX || mir->ub[k2] == +DBL_MAX || + mir->lb[k2] == mir->ub[k2]) continue; + /* change signs, if necessary */ + if (mir->ub[i] == 0.0) a1 = - a1, a2 = - a2; + /* now the row has the form a1 * x1 + a2 * x2 >= 0, where x1 + is continuous, x2 is integer */ + if (a1 > 0.0) + { /* x1 >= - (a2 / a1) * x2 */ + if (mir->vlb[k1] == 0) + { /* set variable lower bound for x1 */ + mir->lb[k1] = - a2 / a1; + mir->vlb[k1] = k2; + /* the row should not be used */ + mir->skip[i] = 1; + } + } + else /* a1 < 0.0 */ + { /* x1 <= - (a2 / a1) * x2 */ + if (mir->vub[k1] == 0) + { /* set variable upper bound for x1 */ + mir->ub[k1] = - a2 / a1; + mir->vub[k1] = k2; + /* the row should not be used */ + mir->skip[i] = 1; + } + } + } + return; +} + +static void mark_useless_rows(glp_tree *tree, struct MIR *mir) +{ /* mark rows which should not be used */ + glp_prob *mip = tree->mip; + int m = mir->m; + GLPAIJ *aij; + int i, k, nv; + for (i = 1; i <= m; i++) + { /* free rows should not be used */ + if (mir->lb[i] == -DBL_MAX && mir->ub[i] == +DBL_MAX) + { mir->skip[i] = 1; + continue; + } + nv = 0; + for (aij = mip->row[i]->ptr; aij != NULL; aij = aij->r_next) + { k = m + aij->col->j; + /* rows with free variables should not be used */ + if (mir->lb[k] == -DBL_MAX && mir->ub[k] == +DBL_MAX) + { mir->skip[i] = 1; + break; + } + /* rows with integer variables having infinite (lower or + upper) bound should not be used */ + if (mir->isint[k] && mir->lb[k] == -DBL_MAX || + mir->isint[k] && mir->ub[k] == +DBL_MAX) + { mir->skip[i] = 1; + break; + } + /* count non-fixed variables */ + if (!(mir->vlb[k] == 0 && mir->vub[k] == 0 && + mir->lb[k] == mir->ub[k])) nv++; + } + /* rows with all variables fixed should not be used */ + if (nv == 0) + { mir->skip[i] = 1; + continue; + } + } + return; +} + +void *ios_mir_init(glp_tree *tree) +{ /* initialize MIR cut generator */ + glp_prob *mip = tree->mip; + int m = mip->m; + int n = mip->n; + struct MIR *mir; +#if _MIR_DEBUG + xprintf("ios_mir_init: warning: debug mode enabled\n"); +#endif + /* allocate working area */ + mir = xmalloc(sizeof(struct MIR)); + mir->m = m; + mir->n = n; + mir->skip = xcalloc(1+m, sizeof(char)); + mir->isint = xcalloc(1+m+n, sizeof(char)); + mir->lb = xcalloc(1+m+n, sizeof(double)); + mir->vlb = xcalloc(1+m+n, sizeof(int)); + mir->ub = xcalloc(1+m+n, sizeof(double)); + mir->vub = xcalloc(1+m+n, sizeof(int)); + mir->x = xcalloc(1+m+n, sizeof(double)); + mir->agg_row = xcalloc(1+MAXAGGR, sizeof(int)); + mir->agg_vec = ios_create_vec(m+n); + mir->subst = xcalloc(1+m+n, sizeof(char)); + mir->mod_vec = ios_create_vec(m+n); + mir->cut_vec = ios_create_vec(m+n); + /* set global row attributes */ + set_row_attrib(tree, mir); + /* set global column attributes */ + set_col_attrib(tree, mir); + /* set variable bounds */ + set_var_bounds(tree, mir); + /* mark rows which should not be used */ + mark_useless_rows(tree, mir); + return mir; +} + +/*********************************************************************** +* NAME +* +* ios_mir_gen - generate MIR cuts +* +* SYNOPSIS +* +* #include "glpios.h" +* void ios_mir_gen(glp_tree *tree, void *gen, IOSPOOL *pool); +* +* DESCRIPTION +* +* The routine ios_mir_gen generates MIR cuts for the current point and +* adds them to the cut pool. */ + +static void get_current_point(glp_tree *tree, struct MIR *mir) +{ /* obtain current point */ + glp_prob *mip = tree->mip; + int m = mir->m; + int n = mir->n; + int k; + for (k = 1; k <= m; k++) + mir->x[k] = mip->row[k]->prim; + for (k = m+1; k <= m+n; k++) + mir->x[k] = mip->col[k-m]->prim; + return; +} + +#if _MIR_DEBUG +static void check_current_point(struct MIR *mir) +{ /* check current point */ + int m = mir->m; + int n = mir->n; + int k, kk; + double lb, ub, eps; + for (k = 1; k <= m+n; k++) + { /* determine lower bound */ + lb = mir->lb[k]; + kk = mir->vlb[k]; + if (kk != 0) + { xassert(lb != -DBL_MAX); + xassert(!mir->isint[k]); + xassert(mir->isint[kk]); + lb *= mir->x[kk]; + } + /* check lower bound */ + if (lb != -DBL_MAX) + { eps = 1e-6 * (1.0 + fabs(lb)); + xassert(mir->x[k] >= lb - eps); + } + /* determine upper bound */ + ub = mir->ub[k]; + kk = mir->vub[k]; + if (kk != 0) + { xassert(ub != +DBL_MAX); + xassert(!mir->isint[k]); + xassert(mir->isint[kk]); + ub *= mir->x[kk]; + } + /* check upper bound */ + if (ub != +DBL_MAX) + { eps = 1e-6 * (1.0 + fabs(ub)); + xassert(mir->x[k] <= ub + eps); + } + } + return; +} +#endif + +static void initial_agg_row(glp_tree *tree, struct MIR *mir, int i) +{ /* use original i-th row as initial aggregated constraint */ + glp_prob *mip = tree->mip; + int m = mir->m; + GLPAIJ *aij; + xassert(1 <= i && i <= m); + xassert(!mir->skip[i]); + /* mark i-th row in order not to use it in the same aggregated + constraint */ + mir->skip[i] = 2; + mir->agg_cnt = 1; + mir->agg_row[1] = i; + /* use x[i] - sum a[i,j] * x[m+j] = 0, where x[i] is auxiliary + variable of row i, x[m+j] are structural variables */ + ios_clear_vec(mir->agg_vec); + ios_set_vj(mir->agg_vec, i, 1.0); + for (aij = mip->row[i]->ptr; aij != NULL; aij = aij->r_next) + ios_set_vj(mir->agg_vec, m + aij->col->j, - aij->val); + mir->agg_rhs = 0.0; +#if _MIR_DEBUG + ios_check_vec(mir->agg_vec); +#endif + return; +} + +#if _MIR_DEBUG +static void check_agg_row(struct MIR *mir) +{ /* check aggregated constraint */ + int m = mir->m; + int n = mir->n; + int j, k; + double r, big; + /* compute the residual r = sum a[k] * x[k] - b and determine + big = max(1, |a[k]|, |b|) */ + r = 0.0, big = 1.0; + for (j = 1; j <= mir->agg_vec->nnz; j++) + { k = mir->agg_vec->ind[j]; + xassert(1 <= k && k <= m+n); + r += mir->agg_vec->val[j] * mir->x[k]; + if (big < fabs(mir->agg_vec->val[j])) + big = fabs(mir->agg_vec->val[j]); + } + r -= mir->agg_rhs; + if (big < fabs(mir->agg_rhs)) + big = fabs(mir->agg_rhs); + /* the residual must be close to zero */ + xassert(fabs(r) <= 1e-6 * big); + return; +} +#endif + +static void subst_fixed_vars(struct MIR *mir) +{ /* substitute fixed variables into aggregated constraint */ + int m = mir->m; + int n = mir->n; + int j, k; + for (j = 1; j <= mir->agg_vec->nnz; j++) + { k = mir->agg_vec->ind[j]; + xassert(1 <= k && k <= m+n); + if (mir->vlb[k] == 0 && mir->vub[k] == 0 && + mir->lb[k] == mir->ub[k]) + { /* x[k] is fixed */ + mir->agg_rhs -= mir->agg_vec->val[j] * mir->lb[k]; + mir->agg_vec->val[j] = 0.0; + } + } + /* remove terms corresponding to fixed variables */ + ios_clean_vec(mir->agg_vec, DBL_EPSILON); +#if _MIR_DEBUG + ios_check_vec(mir->agg_vec); +#endif + return; +} + +static void bound_subst_heur(struct MIR *mir) +{ /* bound substitution heuristic */ + int m = mir->m; + int n = mir->n; + int j, k, kk; + double d1, d2; + for (j = 1; j <= mir->agg_vec->nnz; j++) + { k = mir->agg_vec->ind[j]; + xassert(1 <= k && k <= m+n); + if (mir->isint[k]) continue; /* skip integer variable */ + /* compute distance from x[k] to its lower bound */ + kk = mir->vlb[k]; + if (kk == 0) + { if (mir->lb[k] == -DBL_MAX) + d1 = DBL_MAX; + else + d1 = mir->x[k] - mir->lb[k]; + } + else + { xassert(1 <= kk && kk <= m+n); + xassert(mir->isint[kk]); + xassert(mir->lb[k] != -DBL_MAX); + d1 = mir->x[k] - mir->lb[k] * mir->x[kk]; + } + /* compute distance from x[k] to its upper bound */ + kk = mir->vub[k]; + if (kk == 0) + { if (mir->vub[k] == +DBL_MAX) + d2 = DBL_MAX; + else + d2 = mir->ub[k] - mir->x[k]; + } + else + { xassert(1 <= kk && kk <= m+n); + xassert(mir->isint[kk]); + xassert(mir->ub[k] != +DBL_MAX); + d2 = mir->ub[k] * mir->x[kk] - mir->x[k]; + } + /* x[k] cannot be free */ + xassert(d1 != DBL_MAX || d2 != DBL_MAX); + /* choose the bound which is closer to x[k] */ + xassert(mir->subst[k] == '?'); + if (d1 <= d2) + mir->subst[k] = 'L'; + else + mir->subst[k] = 'U'; + } + return; +} + +static void build_mod_row(struct MIR *mir) +{ /* substitute bounds and build modified constraint */ + int m = mir->m; + int n = mir->n; + int j, jj, k, kk; + /* initially modified constraint is aggregated constraint */ + ios_copy_vec(mir->mod_vec, mir->agg_vec); + mir->mod_rhs = mir->agg_rhs; +#if _MIR_DEBUG + ios_check_vec(mir->mod_vec); +#endif + /* substitute bounds for continuous variables; note that due to + substitution of variable bounds additional terms may appear in + modified constraint */ + for (j = mir->mod_vec->nnz; j >= 1; j--) + { k = mir->mod_vec->ind[j]; + xassert(1 <= k && k <= m+n); + if (mir->isint[k]) continue; /* skip integer variable */ + if (mir->subst[k] == 'L') + { /* x[k] = (lower bound) + x'[k] */ + xassert(mir->lb[k] != -DBL_MAX); + kk = mir->vlb[k]; + if (kk == 0) + { /* x[k] = lb[k] + x'[k] */ + mir->mod_rhs -= mir->mod_vec->val[j] * mir->lb[k]; + } + else + { /* x[k] = lb[k] * x[kk] + x'[k] */ + xassert(mir->isint[kk]); + jj = mir->mod_vec->pos[kk]; + if (jj == 0) + { ios_set_vj(mir->mod_vec, kk, 1.0); + jj = mir->mod_vec->pos[kk]; + mir->mod_vec->val[jj] = 0.0; + } + mir->mod_vec->val[jj] += + mir->mod_vec->val[j] * mir->lb[k]; + } + } + else if (mir->subst[k] == 'U') + { /* x[k] = (upper bound) - x'[k] */ + xassert(mir->ub[k] != +DBL_MAX); + kk = mir->vub[k]; + if (kk == 0) + { /* x[k] = ub[k] - x'[k] */ + mir->mod_rhs -= mir->mod_vec->val[j] * mir->ub[k]; + } + else + { /* x[k] = ub[k] * x[kk] - x'[k] */ + xassert(mir->isint[kk]); + jj = mir->mod_vec->pos[kk]; + if (jj == 0) + { ios_set_vj(mir->mod_vec, kk, 1.0); + jj = mir->mod_vec->pos[kk]; + mir->mod_vec->val[jj] = 0.0; + } + mir->mod_vec->val[jj] += + mir->mod_vec->val[j] * mir->ub[k]; + } + mir->mod_vec->val[j] = - mir->mod_vec->val[j]; + } + else + xassert(k != k); + } +#if _MIR_DEBUG + ios_check_vec(mir->mod_vec); +#endif + /* substitute bounds for integer variables */ + for (j = 1; j <= mir->mod_vec->nnz; j++) + { k = mir->mod_vec->ind[j]; + xassert(1 <= k && k <= m+n); + if (!mir->isint[k]) continue; /* skip continuous variable */ + xassert(mir->subst[k] == '?'); + xassert(mir->vlb[k] == 0 && mir->vub[k] == 0); + xassert(mir->lb[k] != -DBL_MAX && mir->ub[k] != +DBL_MAX); + if (fabs(mir->lb[k]) <= fabs(mir->ub[k])) + { /* x[k] = lb[k] + x'[k] */ + mir->subst[k] = 'L'; + mir->mod_rhs -= mir->mod_vec->val[j] * mir->lb[k]; + } + else + { /* x[k] = ub[k] - x'[k] */ + mir->subst[k] = 'U'; + mir->mod_rhs -= mir->mod_vec->val[j] * mir->ub[k]; + mir->mod_vec->val[j] = - mir->mod_vec->val[j]; + } + } +#if _MIR_DEBUG + ios_check_vec(mir->mod_vec); +#endif + return; +} + +#if _MIR_DEBUG +static void check_mod_row(struct MIR *mir) +{ /* check modified constraint */ + int m = mir->m; + int n = mir->n; + int j, k, kk; + double r, big, x; + /* compute the residual r = sum a'[k] * x'[k] - b' and determine + big = max(1, |a[k]|, |b|) */ + r = 0.0, big = 1.0; + for (j = 1; j <= mir->mod_vec->nnz; j++) + { k = mir->mod_vec->ind[j]; + xassert(1 <= k && k <= m+n); + if (mir->subst[k] == 'L') + { /* x'[k] = x[k] - (lower bound) */ + xassert(mir->lb[k] != -DBL_MAX); + kk = mir->vlb[k]; + if (kk == 0) + x = mir->x[k] - mir->lb[k]; + else + x = mir->x[k] - mir->lb[k] * mir->x[kk]; + } + else if (mir->subst[k] == 'U') + { /* x'[k] = (upper bound) - x[k] */ + xassert(mir->ub[k] != +DBL_MAX); + kk = mir->vub[k]; + if (kk == 0) + x = mir->ub[k] - mir->x[k]; + else + x = mir->ub[k] * mir->x[kk] - mir->x[k]; + } + else + xassert(k != k); + r += mir->mod_vec->val[j] * x; + if (big < fabs(mir->mod_vec->val[j])) + big = fabs(mir->mod_vec->val[j]); + } + r -= mir->mod_rhs; + if (big < fabs(mir->mod_rhs)) + big = fabs(mir->mod_rhs); + /* the residual must be close to zero */ + xassert(fabs(r) <= 1e-6 * big); + return; +} +#endif + +/*********************************************************************** +* mir_ineq - construct MIR inequality +* +* Given the single constraint mixed integer set +* +* |N| +* X = {(x,s) in Z x R : sum a[j] * x[j] <= b + s}, +* + + j in N +* +* this routine constructs the mixed integer rounding (MIR) inequality +* +* sum alpha[j] * x[j] <= beta + gamma * s, +* j in N +* +* which is valid for X. +* +* If the MIR inequality has been successfully constructed, the routine +* returns zero. Otherwise, if b is close to nearest integer, there may +* be numeric difficulties due to big coefficients; so in this case the +* routine returns non-zero. */ + +static int mir_ineq(const int n, const double a[], const double b, + double alpha[], double *beta, double *gamma) +{ int j; + double f, t; + if (fabs(b - floor(b + .5)) < 0.01) + return 1; + f = b - floor(b); + for (j = 1; j <= n; j++) + { t = (a[j] - floor(a[j])) - f; + if (t <= 0.0) + alpha[j] = floor(a[j]); + else + alpha[j] = floor(a[j]) + t / (1.0 - f); + } + *beta = floor(b); + *gamma = 1.0 / (1.0 - f); + return 0; +} + +/*********************************************************************** +* cmir_ineq - construct c-MIR inequality +* +* Given the mixed knapsack set +* +* MK |N| +* X = {(x,s) in Z x R : sum a[j] * x[j] <= b + s, +* + + j in N +* +* x[j] <= u[j]}, +* +* a subset C of variables to be complemented, and a divisor delta > 0, +* this routine constructs the complemented MIR (c-MIR) inequality +* +* sum alpha[j] * x[j] <= beta + gamma * s, +* j in N +* MK +* which is valid for X . +* +* If the c-MIR inequality has been successfully constructed, the +* routine returns zero. Otherwise, if there is a risk of numerical +* difficulties due to big coefficients (see comments to the routine +* mir_ineq), the routine cmir_ineq returns non-zero. */ + +static int cmir_ineq(const int n, const double a[], const double b, + const double u[], const char cset[], const double delta, + double alpha[], double *beta, double *gamma) +{ int j; + double *aa, bb; + aa = alpha, bb = b; + for (j = 1; j <= n; j++) + { aa[j] = a[j] / delta; + if (cset[j]) + aa[j] = - aa[j], bb -= a[j] * u[j]; + } + bb /= delta; + if (mir_ineq(n, aa, bb, alpha, beta, gamma)) return 1; + for (j = 1; j <= n; j++) + { if (cset[j]) + alpha[j] = - alpha[j], *beta += alpha[j] * u[j]; + } + *gamma /= delta; + return 0; +} + +/*********************************************************************** +* cmir_sep - c-MIR separation heuristic +* +* Given the mixed knapsack set +* +* MK |N| +* X = {(x,s) in Z x R : sum a[j] * x[j] <= b + s, +* + + j in N +* +* x[j] <= u[j]} +* +* * * +* and a fractional point (x , s ), this routine tries to construct +* c-MIR inequality +* +* sum alpha[j] * x[j] <= beta + gamma * s, +* j in N +* MK +* which is valid for X and has (desirably maximal) violation at the +* fractional point given. This is attained by choosing an appropriate +* set C of variables to be complemented and a divisor delta > 0, which +* together define corresponding c-MIR inequality. +* +* If a violated c-MIR inequality has been successfully constructed, +* the routine returns its violation: +* +* * * +* sum alpha[j] * x [j] - beta - gamma * s , +* j in N +* +* which is positive. In case of failure the routine returns zero. */ + +struct vset { int j; double v; }; + +static int cmir_cmp(const void *p1, const void *p2) +{ const struct vset *v1 = p1, *v2 = p2; + if (v1->v < v2->v) return -1; + if (v1->v > v2->v) return +1; + return 0; +} + +static double cmir_sep(const int n, const double a[], const double b, + const double u[], const double x[], const double s, + double alpha[], double *beta, double *gamma) +{ int fail, j, k, nv, v; + double delta, eps, d_try[1+3], r, r_best; + char *cset; + struct vset *vset; + /* allocate working arrays */ + cset = xcalloc(1+n, sizeof(char)); + vset = xcalloc(1+n, sizeof(struct vset)); + /* choose initial C */ + for (j = 1; j <= n; j++) + cset[j] = (char)(x[j] >= 0.5 * u[j]); + /* choose initial delta */ + r_best = delta = 0.0; + for (j = 1; j <= n; j++) + { xassert(a[j] != 0.0); + /* if x[j] is close to its bounds, skip it */ + eps = 1e-9 * (1.0 + fabs(u[j])); + if (x[j] < eps || x[j] > u[j] - eps) continue; + /* try delta = |a[j]| to construct c-MIR inequality */ + fail = cmir_ineq(n, a, b, u, cset, fabs(a[j]), alpha, beta, + gamma); + if (fail) continue; + /* compute violation */ + r = - (*beta) - (*gamma) * s; + for (k = 1; k <= n; k++) r += alpha[k] * x[k]; + if (r_best < r) r_best = r, delta = fabs(a[j]); + } + if (r_best < 0.001) r_best = 0.0; + if (r_best == 0.0) goto done; + xassert(delta > 0.0); + /* try to increase violation by dividing delta by 2, 4, and 8, + respectively */ + d_try[1] = delta / 2.0; + d_try[2] = delta / 4.0; + d_try[3] = delta / 8.0; + for (j = 1; j <= 3; j++) + { /* construct c-MIR inequality */ + fail = cmir_ineq(n, a, b, u, cset, d_try[j], alpha, beta, + gamma); + if (fail) continue; + /* compute violation */ + r = - (*beta) - (*gamma) * s; + for (k = 1; k <= n; k++) r += alpha[k] * x[k]; + if (r_best < r) r_best = r, delta = d_try[j]; + } + /* build subset of variables lying strictly between their bounds + and order it by nondecreasing values of |x[j] - u[j]/2| */ + nv = 0; + for (j = 1; j <= n; j++) + { /* if x[j] is close to its bounds, skip it */ + eps = 1e-9 * (1.0 + fabs(u[j])); + if (x[j] < eps || x[j] > u[j] - eps) continue; + /* add x[j] to the subset */ + nv++; + vset[nv].j = j; + vset[nv].v = fabs(x[j] - 0.5 * u[j]); + } + qsort(&vset[1], nv, sizeof(struct vset), cmir_cmp); + /* try to increase violation by successively complementing each + variable in the subset */ + for (v = 1; v <= nv; v++) + { j = vset[v].j; + /* replace x[j] by its complement or vice versa */ + cset[j] = (char)!cset[j]; + /* construct c-MIR inequality */ + fail = cmir_ineq(n, a, b, u, cset, delta, alpha, beta, gamma); + /* restore the variable */ + cset[j] = (char)!cset[j]; + /* do not replace the variable in case of failure */ + if (fail) continue; + /* compute violation */ + r = - (*beta) - (*gamma) * s; + for (k = 1; k <= n; k++) r += alpha[k] * x[k]; + if (r_best < r) r_best = r, cset[j] = (char)!cset[j]; + } + /* construct the best c-MIR inequality chosen */ + fail = cmir_ineq(n, a, b, u, cset, delta, alpha, beta, gamma); + xassert(!fail); +done: /* free working arrays */ + xfree(cset); + xfree(vset); + /* return to the calling routine */ + return r_best; +} + +static double generate(struct MIR *mir) +{ /* try to generate violated c-MIR cut for modified constraint */ + int m = mir->m; + int n = mir->n; + int j, k, kk, nint; + double s, *u, *x, *alpha, r_best = 0.0, b, beta, gamma; + ios_copy_vec(mir->cut_vec, mir->mod_vec); + mir->cut_rhs = mir->mod_rhs; + /* remove small terms, which can appear due to substitution of + variable bounds */ + ios_clean_vec(mir->cut_vec, DBL_EPSILON); +#if _MIR_DEBUG + ios_check_vec(mir->cut_vec); +#endif + /* remove positive continuous terms to obtain MK relaxation */ + for (j = 1; j <= mir->cut_vec->nnz; j++) + { k = mir->cut_vec->ind[j]; + xassert(1 <= k && k <= m+n); + if (!mir->isint[k] && mir->cut_vec->val[j] > 0.0) + mir->cut_vec->val[j] = 0.0; + } + ios_clean_vec(mir->cut_vec, 0.0); +#if _MIR_DEBUG + ios_check_vec(mir->cut_vec); +#endif + /* move integer terms to the beginning of the sparse vector and + determine the number of integer variables */ + nint = 0; + for (j = 1; j <= mir->cut_vec->nnz; j++) + { k = mir->cut_vec->ind[j]; + xassert(1 <= k && k <= m+n); + if (mir->isint[k]) + { double temp; + nint++; + /* interchange elements [nint] and [j] */ + kk = mir->cut_vec->ind[nint]; + mir->cut_vec->pos[k] = nint; + mir->cut_vec->pos[kk] = j; + mir->cut_vec->ind[nint] = k; + mir->cut_vec->ind[j] = kk; + temp = mir->cut_vec->val[nint]; + mir->cut_vec->val[nint] = mir->cut_vec->val[j]; + mir->cut_vec->val[j] = temp; + } + } +#if _MIR_DEBUG + ios_check_vec(mir->cut_vec); +#endif + /* if there is no integer variable, nothing to generate */ + if (nint == 0) goto done; + /* allocate working arrays */ + u = xcalloc(1+nint, sizeof(double)); + x = xcalloc(1+nint, sizeof(double)); + alpha = xcalloc(1+nint, sizeof(double)); + /* determine u and x */ + for (j = 1; j <= nint; j++) + { k = mir->cut_vec->ind[j]; + xassert(m+1 <= k && k <= m+n); + xassert(mir->isint[k]); + u[j] = mir->ub[k] - mir->lb[k]; + xassert(u[j] >= 1.0); + if (mir->subst[k] == 'L') + x[j] = mir->x[k] - mir->lb[k]; + else if (mir->subst[k] == 'U') + x[j] = mir->ub[k] - mir->x[k]; + else + xassert(k != k); + xassert(x[j] >= -0.001); + if (x[j] < 0.0) x[j] = 0.0; + } + /* compute s = - sum of continuous terms */ + s = 0.0; + for (j = nint+1; j <= mir->cut_vec->nnz; j++) + { double x; + k = mir->cut_vec->ind[j]; + xassert(1 <= k && k <= m+n); + /* must be continuous */ + xassert(!mir->isint[k]); + if (mir->subst[k] == 'L') + { xassert(mir->lb[k] != -DBL_MAX); + kk = mir->vlb[k]; + if (kk == 0) + x = mir->x[k] - mir->lb[k]; + else + x = mir->x[k] - mir->lb[k] * mir->x[kk]; + } + else if (mir->subst[k] == 'U') + { xassert(mir->ub[k] != +DBL_MAX); + kk = mir->vub[k]; + if (kk == 0) + x = mir->ub[k] - mir->x[k]; + else + x = mir->ub[k] * mir->x[kk] - mir->x[k]; + } + else + xassert(k != k); + xassert(x >= -0.001); + if (x < 0.0) x = 0.0; + s -= mir->cut_vec->val[j] * x; + } + xassert(s >= 0.0); + /* apply heuristic to obtain most violated c-MIR inequality */ + b = mir->cut_rhs; + r_best = cmir_sep(nint, mir->cut_vec->val, b, u, x, s, alpha, + &beta, &gamma); + if (r_best == 0.0) goto skip; + xassert(r_best > 0.0); + /* convert to raw cut */ + /* sum alpha[j] * x[j] <= beta + gamma * s */ + for (j = 1; j <= nint; j++) + mir->cut_vec->val[j] = alpha[j]; + for (j = nint+1; j <= mir->cut_vec->nnz; j++) + { k = mir->cut_vec->ind[j]; + if (k <= m+n) mir->cut_vec->val[j] *= gamma; + } + mir->cut_rhs = beta; +#if _MIR_DEBUG + ios_check_vec(mir->cut_vec); +#endif +skip: /* free working arrays */ + xfree(u); + xfree(x); + xfree(alpha); +done: return r_best; +} + +#if _MIR_DEBUG +static void check_raw_cut(struct MIR *mir, double r_best) +{ /* check raw cut before back bound substitution */ + int m = mir->m; + int n = mir->n; + int j, k, kk; + double r, big, x; + /* compute the residual r = sum a[k] * x[k] - b and determine + big = max(1, |a[k]|, |b|) */ + r = 0.0, big = 1.0; + for (j = 1; j <= mir->cut_vec->nnz; j++) + { k = mir->cut_vec->ind[j]; + xassert(1 <= k && k <= m+n); + if (mir->subst[k] == 'L') + { xassert(mir->lb[k] != -DBL_MAX); + kk = mir->vlb[k]; + if (kk == 0) + x = mir->x[k] - mir->lb[k]; + else + x = mir->x[k] - mir->lb[k] * mir->x[kk]; + } + else if (mir->subst[k] == 'U') + { xassert(mir->ub[k] != +DBL_MAX); + kk = mir->vub[k]; + if (kk == 0) + x = mir->ub[k] - mir->x[k]; + else + x = mir->ub[k] * mir->x[kk] - mir->x[k]; + } + else + xassert(k != k); + r += mir->cut_vec->val[j] * x; + if (big < fabs(mir->cut_vec->val[j])) + big = fabs(mir->cut_vec->val[j]); + } + r -= mir->cut_rhs; + if (big < fabs(mir->cut_rhs)) + big = fabs(mir->cut_rhs); + /* the residual must be close to r_best */ + xassert(fabs(r - r_best) <= 1e-6 * big); + return; +} +#endif + +static void back_subst(struct MIR *mir) +{ /* back substitution of original bounds */ + int m = mir->m; + int n = mir->n; + int j, jj, k, kk; + /* at first, restore bounds of integer variables (because on + restoring variable bounds of continuous variables we need + original, not shifted, bounds of integer variables) */ + for (j = 1; j <= mir->cut_vec->nnz; j++) + { k = mir->cut_vec->ind[j]; + xassert(1 <= k && k <= m+n); + if (!mir->isint[k]) continue; /* skip continuous */ + if (mir->subst[k] == 'L') + { /* x'[k] = x[k] - lb[k] */ + xassert(mir->lb[k] != -DBL_MAX); + xassert(mir->vlb[k] == 0); + mir->cut_rhs += mir->cut_vec->val[j] * mir->lb[k]; + } + else if (mir->subst[k] == 'U') + { /* x'[k] = ub[k] - x[k] */ + xassert(mir->ub[k] != +DBL_MAX); + xassert(mir->vub[k] == 0); + mir->cut_rhs -= mir->cut_vec->val[j] * mir->ub[k]; + mir->cut_vec->val[j] = - mir->cut_vec->val[j]; + } + else + xassert(k != k); + } + /* now restore bounds of continuous variables */ + for (j = 1; j <= mir->cut_vec->nnz; j++) + { k = mir->cut_vec->ind[j]; + xassert(1 <= k && k <= m+n); + if (mir->isint[k]) continue; /* skip integer */ + if (mir->subst[k] == 'L') + { /* x'[k] = x[k] - (lower bound) */ + xassert(mir->lb[k] != -DBL_MAX); + kk = mir->vlb[k]; + if (kk == 0) + { /* x'[k] = x[k] - lb[k] */ + mir->cut_rhs += mir->cut_vec->val[j] * mir->lb[k]; + } + else + { /* x'[k] = x[k] - lb[k] * x[kk] */ + jj = mir->cut_vec->pos[kk]; +#if 0 + xassert(jj != 0); +#else + if (jj == 0) + { ios_set_vj(mir->cut_vec, kk, 1.0); + jj = mir->cut_vec->pos[kk]; + xassert(jj != 0); + mir->cut_vec->val[jj] = 0.0; + } +#endif + mir->cut_vec->val[jj] -= mir->cut_vec->val[j] * + mir->lb[k]; + } + } + else if (mir->subst[k] == 'U') + { /* x'[k] = (upper bound) - x[k] */ + xassert(mir->ub[k] != +DBL_MAX); + kk = mir->vub[k]; + if (kk == 0) + { /* x'[k] = ub[k] - x[k] */ + mir->cut_rhs -= mir->cut_vec->val[j] * mir->ub[k]; + } + else + { /* x'[k] = ub[k] * x[kk] - x[k] */ + jj = mir->cut_vec->pos[kk]; + if (jj == 0) + { ios_set_vj(mir->cut_vec, kk, 1.0); + jj = mir->cut_vec->pos[kk]; + xassert(jj != 0); + mir->cut_vec->val[jj] = 0.0; + } + mir->cut_vec->val[jj] += mir->cut_vec->val[j] * + mir->ub[k]; + } + mir->cut_vec->val[j] = - mir->cut_vec->val[j]; + } + else + xassert(k != k); + } +#if _MIR_DEBUG + ios_check_vec(mir->cut_vec); +#endif + return; +} + +#if _MIR_DEBUG +static void check_cut_row(struct MIR *mir, double r_best) +{ /* check the cut after back bound substitution or elimination of + auxiliary variables */ + int m = mir->m; + int n = mir->n; + int j, k; + double r, big; + /* compute the residual r = sum a[k] * x[k] - b and determine + big = max(1, |a[k]|, |b|) */ + r = 0.0, big = 1.0; + for (j = 1; j <= mir->cut_vec->nnz; j++) + { k = mir->cut_vec->ind[j]; + xassert(1 <= k && k <= m+n); + r += mir->cut_vec->val[j] * mir->x[k]; + if (big < fabs(mir->cut_vec->val[j])) + big = fabs(mir->cut_vec->val[j]); + } + r -= mir->cut_rhs; + if (big < fabs(mir->cut_rhs)) + big = fabs(mir->cut_rhs); + /* the residual must be close to r_best */ + xassert(fabs(r - r_best) <= 1e-6 * big); + return; +} +#endif + +static void subst_aux_vars(glp_tree *tree, struct MIR *mir) +{ /* final substitution to eliminate auxiliary variables */ + glp_prob *mip = tree->mip; + int m = mir->m; + int n = mir->n; + GLPAIJ *aij; + int j, k, kk, jj; + for (j = mir->cut_vec->nnz; j >= 1; j--) + { k = mir->cut_vec->ind[j]; + xassert(1 <= k && k <= m+n); + if (k > m) continue; /* skip structurals */ + for (aij = mip->row[k]->ptr; aij != NULL; aij = aij->r_next) + { kk = m + aij->col->j; /* structural */ + jj = mir->cut_vec->pos[kk]; + if (jj == 0) + { ios_set_vj(mir->cut_vec, kk, 1.0); + jj = mir->cut_vec->pos[kk]; + mir->cut_vec->val[jj] = 0.0; + } + mir->cut_vec->val[jj] += mir->cut_vec->val[j] * aij->val; + } + mir->cut_vec->val[j] = 0.0; + } + ios_clean_vec(mir->cut_vec, 0.0); + return; +} + +static void add_cut(glp_tree *tree, struct MIR *mir) +{ /* add constructed cut inequality to the cut pool */ + int m = mir->m; + int n = mir->n; + int j, k, len; + int *ind = xcalloc(1+n, sizeof(int)); + double *val = xcalloc(1+n, sizeof(double)); + len = 0; + for (j = mir->cut_vec->nnz; j >= 1; j--) + { k = mir->cut_vec->ind[j]; + xassert(m+1 <= k && k <= m+n); + len++, ind[len] = k - m, val[len] = mir->cut_vec->val[j]; + } +#if 0 + ios_add_cut_row(tree, pool, GLP_RF_MIR, len, ind, val, GLP_UP, + mir->cut_rhs); +#else + glp_ios_add_row(tree, NULL, GLP_RF_MIR, 0, len, ind, val, GLP_UP, + mir->cut_rhs); +#endif + xfree(ind); + xfree(val); + return; +} + +static int aggregate_row(glp_tree *tree, struct MIR *mir) +{ /* try to aggregate another row */ + glp_prob *mip = tree->mip; + int m = mir->m; + int n = mir->n; + GLPAIJ *aij; + IOSVEC *v; + int ii, j, jj, k, kk, kappa = 0, ret = 0; + double d1, d2, d, d_max = 0.0; + /* choose appropriate structural variable in the aggregated row + to be substituted */ + for (j = 1; j <= mir->agg_vec->nnz; j++) + { k = mir->agg_vec->ind[j]; + xassert(1 <= k && k <= m+n); + if (k <= m) continue; /* skip auxiliary var */ + if (mir->isint[k]) continue; /* skip integer var */ + if (fabs(mir->agg_vec->val[j]) < 0.001) continue; + /* compute distance from x[k] to its lower bound */ + kk = mir->vlb[k]; + if (kk == 0) + { if (mir->lb[k] == -DBL_MAX) + d1 = DBL_MAX; + else + d1 = mir->x[k] - mir->lb[k]; + } + else + { xassert(1 <= kk && kk <= m+n); + xassert(mir->isint[kk]); + xassert(mir->lb[k] != -DBL_MAX); + d1 = mir->x[k] - mir->lb[k] * mir->x[kk]; + } + /* compute distance from x[k] to its upper bound */ + kk = mir->vub[k]; + if (kk == 0) + { if (mir->vub[k] == +DBL_MAX) + d2 = DBL_MAX; + else + d2 = mir->ub[k] - mir->x[k]; + } + else + { xassert(1 <= kk && kk <= m+n); + xassert(mir->isint[kk]); + xassert(mir->ub[k] != +DBL_MAX); + d2 = mir->ub[k] * mir->x[kk] - mir->x[k]; + } + /* x[k] cannot be free */ + xassert(d1 != DBL_MAX || d2 != DBL_MAX); + /* d = min(d1, d2) */ + d = (d1 <= d2 ? d1 : d2); + xassert(d != DBL_MAX); + /* should not be close to corresponding bound */ + if (d < 0.001) continue; + if (d_max < d) d_max = d, kappa = k; + } + if (kappa == 0) + { /* nothing chosen */ + ret = 1; + goto done; + } + /* x[kappa] has been chosen */ + xassert(m+1 <= kappa && kappa <= m+n); + xassert(!mir->isint[kappa]); + /* find another row, which have not been used yet, to eliminate + x[kappa] from the aggregated row */ + for (ii = 1; ii <= m; ii++) + { if (mir->skip[ii]) continue; + for (aij = mip->row[ii]->ptr; aij != NULL; aij = aij->r_next) + if (aij->col->j == kappa - m) break; + if (aij != NULL && fabs(aij->val) >= 0.001) break; + } + if (ii > m) + { /* nothing found */ + ret = 2; + goto done; + } + /* row ii has been found; include it in the aggregated list */ + mir->agg_cnt++; + xassert(mir->agg_cnt <= MAXAGGR); + mir->agg_row[mir->agg_cnt] = ii; + mir->skip[ii] = 2; + /* v := new row */ + v = ios_create_vec(m+n); + ios_set_vj(v, ii, 1.0); + for (aij = mip->row[ii]->ptr; aij != NULL; aij = aij->r_next) + ios_set_vj(v, m + aij->col->j, - aij->val); +#if _MIR_DEBUG + ios_check_vec(v); +#endif + /* perform gaussian elimination to remove x[kappa] */ + j = mir->agg_vec->pos[kappa]; + xassert(j != 0); + jj = v->pos[kappa]; + xassert(jj != 0); + ios_linear_comb(mir->agg_vec, + - mir->agg_vec->val[j] / v->val[jj], v); + ios_delete_vec(v); + ios_set_vj(mir->agg_vec, kappa, 0.0); +#if _MIR_DEBUG + ios_check_vec(mir->agg_vec); +#endif +done: return ret; +} + +void ios_mir_gen(glp_tree *tree, void *gen) +{ /* main routine to generate MIR cuts */ + glp_prob *mip = tree->mip; + struct MIR *mir = gen; + int m = mir->m; + int n = mir->n; + int i; + double r_best; + xassert(mip->m >= m); + xassert(mip->n == n); + /* obtain current point */ + get_current_point(tree, mir); +#if _MIR_DEBUG + /* check current point */ + check_current_point(mir); +#endif + /* reset bound substitution flags */ + memset(&mir->subst[1], '?', m+n); + /* try to generate a set of violated MIR cuts */ + for (i = 1; i <= m; i++) + { if (mir->skip[i]) continue; + /* use original i-th row as initial aggregated constraint */ + initial_agg_row(tree, mir, i); +loop: ; +#if _MIR_DEBUG + /* check aggregated row */ + check_agg_row(mir); +#endif + /* substitute fixed variables into aggregated constraint */ + subst_fixed_vars(mir); +#if _MIR_DEBUG + /* check aggregated row */ + check_agg_row(mir); +#endif +#if _MIR_DEBUG + /* check bound substitution flags */ + { int k; + for (k = 1; k <= m+n; k++) + xassert(mir->subst[k] == '?'); + } +#endif + /* apply bound substitution heuristic */ + bound_subst_heur(mir); + /* substitute bounds and build modified constraint */ + build_mod_row(mir); +#if _MIR_DEBUG + /* check modified row */ + check_mod_row(mir); +#endif + /* try to generate violated c-MIR cut for modified row */ + r_best = generate(mir); + if (r_best > 0.0) + { /* success */ +#if _MIR_DEBUG + /* check raw cut before back bound substitution */ + check_raw_cut(mir, r_best); +#endif + /* back substitution of original bounds */ + back_subst(mir); +#if _MIR_DEBUG + /* check the cut after back bound substitution */ + check_cut_row(mir, r_best); +#endif + /* final substitution to eliminate auxiliary variables */ + subst_aux_vars(tree, mir); +#if _MIR_DEBUG + /* check the cut after elimination of auxiliaries */ + check_cut_row(mir, r_best); +#endif + /* add constructed cut inequality to the cut pool */ + add_cut(tree, mir); + } + /* reset bound substitution flags */ + { int j, k; + for (j = 1; j <= mir->mod_vec->nnz; j++) + { k = mir->mod_vec->ind[j]; + xassert(1 <= k && k <= m+n); + xassert(mir->subst[k] != '?'); + mir->subst[k] = '?'; + } + } + if (r_best == 0.0) + { /* failure */ + if (mir->agg_cnt < MAXAGGR) + { /* try to aggregate another row */ + if (aggregate_row(tree, mir) == 0) goto loop; + } + } + /* unmark rows used in the aggregated constraint */ + { int k, ii; + for (k = 1; k <= mir->agg_cnt; k++) + { ii = mir->agg_row[k]; + xassert(1 <= ii && ii <= m); + xassert(mir->skip[ii] == 2); + mir->skip[ii] = 0; + } + } + } + return; +} + +/*********************************************************************** +* NAME +* +* ios_mir_term - terminate MIR cut generator +* +* SYNOPSIS +* +* #include "glpios.h" +* void ios_mir_term(void *gen); +* +* DESCRIPTION +* +* The routine ios_mir_term deletes the MIR cut generator working area +* freeing all the memory allocated to it. */ + +void ios_mir_term(void *gen) +{ struct MIR *mir = gen; + xfree(mir->skip); + xfree(mir->isint); + xfree(mir->lb); + xfree(mir->vlb); + xfree(mir->ub); + xfree(mir->vub); + xfree(mir->x); + xfree(mir->agg_row); + ios_delete_vec(mir->agg_vec); + xfree(mir->subst); + ios_delete_vec(mir->mod_vec); + ios_delete_vec(mir->cut_vec); + xfree(mir); + return; +} + +/* eof */