diff -r d59bea55db9b -r c445c931472f src/glpios07.c --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/glpios07.c Mon Dec 06 13:09:21 2010 +0100 @@ -0,0 +1,554 @@ +/* glpios07.c (mixed cover cut generator) */ + +/*********************************************************************** +* This code is part of GLPK (GNU Linear Programming Kit). +* +* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, +* 2009, 2010 Andrew Makhorin, Department for Applied Informatics, +* Moscow Aviation Institute, Moscow, Russia. All rights reserved. +* E-mail: . +* +* GLPK is free software: you can redistribute it and/or modify it +* under the terms of the GNU General Public License as published by +* the Free Software Foundation, either version 3 of the License, or +* (at your option) any later version. +* +* GLPK is distributed in the hope that it will be useful, but WITHOUT +* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY +* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public +* License for more details. +* +* You should have received a copy of the GNU General Public License +* along with GLPK. If not, see . +***********************************************************************/ + +#include "glpios.h" + +/*---------------------------------------------------------------------- +-- COVER INEQUALITIES +-- +-- Consider the set of feasible solutions to 0-1 knapsack problem: +-- +-- sum a[j]*x[j] <= b, (1) +-- j in J +-- +-- x[j] is binary, (2) +-- +-- where, wlog, we assume that a[j] > 0 (since 0-1 variables can be +-- complemented) and a[j] <= b (since a[j] > b implies x[j] = 0). +-- +-- A set C within J is called a cover if +-- +-- sum a[j] > b. (3) +-- j in C +-- +-- For any cover C the inequality +-- +-- sum x[j] <= |C| - 1 (4) +-- j in C +-- +-- is called a cover inequality and is valid for (1)-(2). +-- +-- MIXED COVER INEQUALITIES +-- +-- Consider the set of feasible solutions to mixed knapsack problem: +-- +-- sum a[j]*x[j] + y <= b, (5) +-- j in J +-- +-- x[j] is binary, (6) +-- +-- 0 <= y <= u is continuous, (7) +-- +-- where again we assume that a[j] > 0. +-- +-- Let C within J be some set. From (1)-(4) it follows that +-- +-- sum a[j] > b - y (8) +-- j in C +-- +-- implies +-- +-- sum x[j] <= |C| - 1. (9) +-- j in C +-- +-- Thus, we need to modify the inequality (9) in such a way that it be +-- a constraint only if the condition (8) is satisfied. +-- +-- Consider the following inequality: +-- +-- sum x[j] <= |C| - t. (10) +-- j in C +-- +-- If 0 < t <= 1, then (10) is equivalent to (9), because all x[j] are +-- binary variables. On the other hand, if t <= 0, (10) being satisfied +-- for any values of x[j] is not a constraint. +-- +-- Let +-- +-- t' = sum a[j] + y - b. (11) +-- j in C +-- +-- It is understood that the condition t' > 0 is equivalent to (8). +-- Besides, from (6)-(7) it follows that t' has an implied upper bound: +-- +-- t'max = sum a[j] + u - b. (12) +-- j in C +-- +-- This allows to express the parameter t having desired properties: +-- +-- t = t' / t'max. (13) +-- +-- In fact, t <= 1 by definition, and t > 0 being equivalent to t' > 0 +-- is equivalent to (8). +-- +-- Thus, the inequality (10), where t is given by formula (13) is valid +-- for (5)-(7). +-- +-- Note that if u = 0, then y = 0, so t = 1, and the conditions (8) and +-- (10) is transformed to the conditions (3) and (4). +-- +-- GENERATING MIXED COVER CUTS +-- +-- To generate a mixed cover cut in the form (10) we need to find such +-- set C which satisfies to the inequality (8) and for which, in turn, +-- the inequality (10) is violated in the current point. +-- +-- Substituting t from (13) to (10) gives: +-- +-- 1 +-- sum x[j] <= |C| - ----- (sum a[j] + y - b), (14) +-- j in C t'max j in C +-- +-- and finally we have the cut inequality in the standard form: +-- +-- sum x[j] + alfa * y <= beta, (15) +-- j in C +-- +-- where: +-- +-- alfa = 1 / t'max, (16) +-- +-- beta = |C| - alfa * (sum a[j] - b). (17) +-- j in C */ + +#if 1 +#define MAXTRY 1000 +#else +#define MAXTRY 10000 +#endif + +static int cover2(int n, double a[], double b, double u, double x[], + double y, int cov[], double *_alfa, double *_beta) +{ /* try to generate mixed cover cut using two-element cover */ + int i, j, try = 0, ret = 0; + double eps, alfa, beta, temp, rmax = 0.001; + eps = 0.001 * (1.0 + fabs(b)); + for (i = 0+1; i <= n; i++) + for (j = i+1; j <= n; j++) + { /* C = {i, j} */ + try++; + if (try > MAXTRY) goto done; + /* check if condition (8) is satisfied */ + if (a[i] + a[j] + y > b + eps) + { /* compute parameters for inequality (15) */ + temp = a[i] + a[j] - b; + alfa = 1.0 / (temp + u); + beta = 2.0 - alfa * temp; + /* compute violation of inequality (15) */ + temp = x[i] + x[j] + alfa * y - beta; + /* choose C providing maximum violation */ + if (rmax < temp) + { rmax = temp; + cov[1] = i; + cov[2] = j; + *_alfa = alfa; + *_beta = beta; + ret = 1; + } + } + } +done: return ret; +} + +static int cover3(int n, double a[], double b, double u, double x[], + double y, int cov[], double *_alfa, double *_beta) +{ /* try to generate mixed cover cut using three-element cover */ + int i, j, k, try = 0, ret = 0; + double eps, alfa, beta, temp, rmax = 0.001; + eps = 0.001 * (1.0 + fabs(b)); + for (i = 0+1; i <= n; i++) + for (j = i+1; j <= n; j++) + for (k = j+1; k <= n; k++) + { /* C = {i, j, k} */ + try++; + if (try > MAXTRY) goto done; + /* check if condition (8) is satisfied */ + if (a[i] + a[j] + a[k] + y > b + eps) + { /* compute parameters for inequality (15) */ + temp = a[i] + a[j] + a[k] - b; + alfa = 1.0 / (temp + u); + beta = 3.0 - alfa * temp; + /* compute violation of inequality (15) */ + temp = x[i] + x[j] + x[k] + alfa * y - beta; + /* choose C providing maximum violation */ + if (rmax < temp) + { rmax = temp; + cov[1] = i; + cov[2] = j; + cov[3] = k; + *_alfa = alfa; + *_beta = beta; + ret = 1; + } + } + } +done: return ret; +} + +static int cover4(int n, double a[], double b, double u, double x[], + double y, int cov[], double *_alfa, double *_beta) +{ /* try to generate mixed cover cut using four-element cover */ + int i, j, k, l, try = 0, ret = 0; + double eps, alfa, beta, temp, rmax = 0.001; + eps = 0.001 * (1.0 + fabs(b)); + for (i = 0+1; i <= n; i++) + for (j = i+1; j <= n; j++) + for (k = j+1; k <= n; k++) + for (l = k+1; l <= n; l++) + { /* C = {i, j, k, l} */ + try++; + if (try > MAXTRY) goto done; + /* check if condition (8) is satisfied */ + if (a[i] + a[j] + a[k] + a[l] + y > b + eps) + { /* compute parameters for inequality (15) */ + temp = a[i] + a[j] + a[k] + a[l] - b; + alfa = 1.0 / (temp + u); + beta = 4.0 - alfa * temp; + /* compute violation of inequality (15) */ + temp = x[i] + x[j] + x[k] + x[l] + alfa * y - beta; + /* choose C providing maximum violation */ + if (rmax < temp) + { rmax = temp; + cov[1] = i; + cov[2] = j; + cov[3] = k; + cov[4] = l; + *_alfa = alfa; + *_beta = beta; + ret = 1; + } + } + } +done: return ret; +} + +static int cover(int n, double a[], double b, double u, double x[], + double y, int cov[], double *alfa, double *beta) +{ /* try to generate mixed cover cut; + input (see (5)): + n is the number of binary variables; + a[1:n] are coefficients at binary variables; + b is the right-hand side; + u is upper bound of continuous variable; + x[1:n] are values of binary variables at current point; + y is value of continuous variable at current point; + output (see (15), (16), (17)): + cov[1:r] are indices of binary variables included in cover C, + where r is the set cardinality returned on exit; + alfa coefficient at continuous variable; + beta is the right-hand side; */ + int j; + /* perform some sanity checks */ + xassert(n >= 2); + for (j = 1; j <= n; j++) xassert(a[j] > 0.0); +#if 1 /* ??? */ + xassert(b > -1e-5); +#else + xassert(b > 0.0); +#endif + xassert(u >= 0.0); + for (j = 1; j <= n; j++) xassert(0.0 <= x[j] && x[j] <= 1.0); + xassert(0.0 <= y && y <= u); + /* try to generate mixed cover cut */ + if (cover2(n, a, b, u, x, y, cov, alfa, beta)) return 2; + if (cover3(n, a, b, u, x, y, cov, alfa, beta)) return 3; + if (cover4(n, a, b, u, x, y, cov, alfa, beta)) return 4; + return 0; +} + +/*---------------------------------------------------------------------- +-- lpx_cover_cut - generate mixed cover cut. +-- +-- SYNOPSIS +-- +-- #include "glplpx.h" +-- int lpx_cover_cut(LPX *lp, int len, int ind[], double val[], +-- double work[]); +-- +-- DESCRIPTION +-- +-- The routine lpx_cover_cut generates a mixed cover cut for a given +-- row of the MIP problem. +-- +-- The given row of the MIP problem should be explicitly specified in +-- the form: +-- +-- sum{j in J} a[j]*x[j] <= b. (1) +-- +-- On entry indices (ordinal numbers) of structural variables, which +-- have non-zero constraint coefficients, should be placed in locations +-- ind[1], ..., ind[len], and corresponding constraint coefficients +-- should be placed in locations val[1], ..., val[len]. The right-hand +-- side b should be stored in location val[0]. +-- +-- The working array work should have at least nb locations, where nb +-- is the number of binary variables in (1). +-- +-- The routine generates a mixed cover cut in the same form as (1) and +-- stores the cut coefficients and right-hand side in the same way as +-- just described above. +-- +-- RETURNS +-- +-- If the cutting plane has been successfully generated, the routine +-- returns 1 <= len' <= n, which is the number of non-zero coefficients +-- in the inequality constraint. Otherwise, the routine returns zero. */ + +static int lpx_cover_cut(LPX *lp, int len, int ind[], double val[], + double work[]) +{ int cov[1+4], j, k, nb, newlen, r; + double f_min, f_max, alfa, beta, u, *x = work, y; + /* substitute and remove fixed variables */ + newlen = 0; + for (k = 1; k <= len; k++) + { j = ind[k]; + if (lpx_get_col_type(lp, j) == LPX_FX) + val[0] -= val[k] * lpx_get_col_lb(lp, j); + else + { newlen++; + ind[newlen] = ind[k]; + val[newlen] = val[k]; + } + } + len = newlen; + /* move binary variables to the beginning of the list so that + elements 1, 2, ..., nb correspond to binary variables, and + elements nb+1, nb+2, ..., len correspond to rest variables */ + nb = 0; + for (k = 1; k <= len; k++) + { j = ind[k]; + if (lpx_get_col_kind(lp, j) == LPX_IV && + lpx_get_col_type(lp, j) == LPX_DB && + lpx_get_col_lb(lp, j) == 0.0 && + lpx_get_col_ub(lp, j) == 1.0) + { /* binary variable */ + int ind_k; + double val_k; + nb++; + ind_k = ind[nb], val_k = val[nb]; + ind[nb] = ind[k], val[nb] = val[k]; + ind[k] = ind_k, val[k] = val_k; + } + } + /* now the specified row has the form: + sum a[j]*x[j] + sum a[j]*y[j] <= b, + where x[j] are binary variables, y[j] are rest variables */ + /* at least two binary variables are needed */ + if (nb < 2) return 0; + /* compute implied lower and upper bounds for sum a[j]*y[j] */ + f_min = f_max = 0.0; + for (k = nb+1; k <= len; k++) + { j = ind[k]; + /* both bounds must be finite */ + if (lpx_get_col_type(lp, j) != LPX_DB) return 0; + if (val[k] > 0.0) + { f_min += val[k] * lpx_get_col_lb(lp, j); + f_max += val[k] * lpx_get_col_ub(lp, j); + } + else + { f_min += val[k] * lpx_get_col_ub(lp, j); + f_max += val[k] * lpx_get_col_lb(lp, j); + } + } + /* sum a[j]*x[j] + sum a[j]*y[j] <= b ===> + sum a[j]*x[j] + (sum a[j]*y[j] - f_min) <= b - f_min ===> + sum a[j]*x[j] + y <= b - f_min, + where y = sum a[j]*y[j] - f_min; + note that 0 <= y <= u, u = f_max - f_min */ + /* determine upper bound of y */ + u = f_max - f_min; + /* determine value of y at the current point */ + y = 0.0; + for (k = nb+1; k <= len; k++) + { j = ind[k]; + y += val[k] * lpx_get_col_prim(lp, j); + } + y -= f_min; + if (y < 0.0) y = 0.0; + if (y > u) y = u; + /* modify the right-hand side b */ + val[0] -= f_min; + /* now the transformed row has the form: + sum a[j]*x[j] + y <= b, where 0 <= y <= u */ + /* determine values of x[j] at the current point */ + for (k = 1; k <= nb; k++) + { j = ind[k]; + x[k] = lpx_get_col_prim(lp, j); + if (x[k] < 0.0) x[k] = 0.0; + if (x[k] > 1.0) x[k] = 1.0; + } + /* if a[j] < 0, replace x[j] by its complement 1 - x'[j] */ + for (k = 1; k <= nb; k++) + { if (val[k] < 0.0) + { ind[k] = - ind[k]; + val[k] = - val[k]; + val[0] += val[k]; + x[k] = 1.0 - x[k]; + } + } + /* try to generate a mixed cover cut for the transformed row */ + r = cover(nb, val, val[0], u, x, y, cov, &alfa, &beta); + if (r == 0) return 0; + xassert(2 <= r && r <= 4); + /* now the cut is in the form: + sum{j in C} x[j] + alfa * y <= beta */ + /* store the right-hand side beta */ + ind[0] = 0, val[0] = beta; + /* restore the original ordinal numbers of x[j] */ + for (j = 1; j <= r; j++) cov[j] = ind[cov[j]]; + /* store cut coefficients at binary variables complementing back + the variables having negative row coefficients */ + xassert(r <= nb); + for (k = 1; k <= r; k++) + { if (cov[k] > 0) + { ind[k] = +cov[k]; + val[k] = +1.0; + } + else + { ind[k] = -cov[k]; + val[k] = -1.0; + val[0] -= 1.0; + } + } + /* substitute y = sum a[j]*y[j] - f_min */ + for (k = nb+1; k <= len; k++) + { r++; + ind[r] = ind[k]; + val[r] = alfa * val[k]; + } + val[0] += alfa * f_min; + xassert(r <= len); + len = r; + return len; +} + +/*---------------------------------------------------------------------- +-- lpx_eval_row - compute explictily specified row. +-- +-- SYNOPSIS +-- +-- #include "glplpx.h" +-- double lpx_eval_row(LPX *lp, int len, int ind[], double val[]); +-- +-- DESCRIPTION +-- +-- The routine lpx_eval_row computes the primal value of an explicitly +-- specified row using current values of structural variables. +-- +-- The explicitly specified row may be thought as a linear form: +-- +-- y = a[1]*x[m+1] + a[2]*x[m+2] + ... + a[n]*x[m+n], +-- +-- where y is an auxiliary variable for this row, a[j] are coefficients +-- of the linear form, x[m+j] are structural variables. +-- +-- On entry column indices and numerical values of non-zero elements of +-- the row should be stored in locations ind[1], ..., ind[len] and +-- val[1], ..., val[len], where len is the number of non-zero elements. +-- The array ind and val are not changed on exit. +-- +-- RETURNS +-- +-- The routine returns a computed value of y, the auxiliary variable of +-- the specified row. */ + +static double lpx_eval_row(LPX *lp, int len, int ind[], double val[]) +{ int n = lpx_get_num_cols(lp); + int j, k; + double sum = 0.0; + if (len < 0) + xerror("lpx_eval_row: len = %d; invalid row length\n", len); + for (k = 1; k <= len; k++) + { j = ind[k]; + if (!(1 <= j && j <= n)) + xerror("lpx_eval_row: j = %d; column number out of range\n", + j); + sum += val[k] * lpx_get_col_prim(lp, j); + } + return sum; +} + +/*********************************************************************** +* NAME +* +* ios_cov_gen - generate mixed cover cuts +* +* SYNOPSIS +* +* #include "glpios.h" +* void ios_cov_gen(glp_tree *tree); +* +* DESCRIPTION +* +* The routine ios_cov_gen generates mixed cover cuts for the current +* point and adds them to the cut pool. */ + +void ios_cov_gen(glp_tree *tree) +{ glp_prob *prob = tree->mip; + int m = lpx_get_num_rows(prob); + int n = lpx_get_num_cols(prob); + int i, k, type, kase, len, *ind; + double r, *val, *work; + xassert(lpx_get_status(prob) == LPX_OPT); + /* allocate working arrays */ + ind = xcalloc(1+n, sizeof(int)); + val = xcalloc(1+n, sizeof(double)); + work = xcalloc(1+n, sizeof(double)); + /* look through all rows */ + for (i = 1; i <= m; i++) + for (kase = 1; kase <= 2; kase++) + { type = lpx_get_row_type(prob, i); + if (kase == 1) + { /* consider rows of '<=' type */ + if (!(type == LPX_UP || type == LPX_DB)) continue; + len = lpx_get_mat_row(prob, i, ind, val); + val[0] = lpx_get_row_ub(prob, i); + } + else + { /* consider rows of '>=' type */ + if (!(type == LPX_LO || type == LPX_DB)) continue; + len = lpx_get_mat_row(prob, i, ind, val); + for (k = 1; k <= len; k++) val[k] = - val[k]; + val[0] = - lpx_get_row_lb(prob, i); + } + /* generate mixed cover cut: + sum{j in J} a[j] * x[j] <= b */ + len = lpx_cover_cut(prob, len, ind, val, work); + if (len == 0) continue; + /* at the current point the cut inequality is violated, i.e. + sum{j in J} a[j] * x[j] - b > 0 */ + r = lpx_eval_row(prob, len, ind, val) - val[0]; + if (r < 1e-3) continue; + /* add the cut to the cut pool */ + glp_ios_add_row(tree, NULL, GLP_RF_COV, 0, len, ind, val, + GLP_UP, val[0]); + } + /* free working arrays */ + xfree(ind); + xfree(val); + xfree(work); + return; +} + +/* eof */