diff -r d59bea55db9b -r c445c931472f src/glpios11.c --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/glpios11.c Mon Dec 06 13:09:21 2010 +0100 @@ -0,0 +1,280 @@ +/* glpios11.c (process cuts stored in the local cut pool) */ + +/*********************************************************************** +* This code is part of GLPK (GNU Linear Programming Kit). +* +* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, +* 2009, 2010 Andrew Makhorin, Department for Applied Informatics, +* Moscow Aviation Institute, Moscow, Russia. All rights reserved. +* E-mail: . +* +* GLPK is free software: you can redistribute it and/or modify it +* under the terms of the GNU General Public License as published by +* the Free Software Foundation, either version 3 of the License, or +* (at your option) any later version. +* +* GLPK is distributed in the hope that it will be useful, but WITHOUT +* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY +* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public +* License for more details. +* +* You should have received a copy of the GNU General Public License +* along with GLPK. If not, see . +***********************************************************************/ + +#include "glpios.h" + +/*********************************************************************** +* NAME +* +* ios_process_cuts - process cuts stored in the local cut pool +* +* SYNOPSIS +* +* #include "glpios.h" +* void ios_process_cuts(glp_tree *T); +* +* DESCRIPTION +* +* The routine ios_process_cuts analyzes each cut currently stored in +* the local cut pool, which must be non-empty, and either adds the cut +* to the current subproblem or just discards it. All cuts are assumed +* to be locally valid. On exit the local cut pool remains unchanged. +* +* REFERENCES +* +* 1. E.Balas, S.Ceria, G.Cornuejols, "Mixed 0-1 Programming by +* Lift-and-Project in a Branch-and-Cut Framework", Management Sc., +* 42 (1996) 1229-1246. +* +* 2. G.Andreello, A.Caprara, and M.Fischetti, "Embedding Cuts in +* a Branch&Cut Framework: a Computational Study with {0,1/2}-Cuts", +* Preliminary Draft, October 28, 2003, pp.6-8. */ + +struct info +{ /* estimated cut efficiency */ + IOSCUT *cut; + /* pointer to cut in the cut pool */ + char flag; + /* if this flag is set, the cut is included into the current + subproblem */ + double eff; + /* cut efficacy (normalized residual) */ + double deg; + /* lower bound to objective degradation */ +}; + +static int fcmp(const void *arg1, const void *arg2) +{ const struct info *info1 = arg1, *info2 = arg2; + if (info1->deg == 0.0 && info2->deg == 0.0) + { if (info1->eff > info2->eff) return -1; + if (info1->eff < info2->eff) return +1; + } + else + { if (info1->deg > info2->deg) return -1; + if (info1->deg < info2->deg) return +1; + } + return 0; +} + +static double parallel(IOSCUT *a, IOSCUT *b, double work[]); + +void ios_process_cuts(glp_tree *T) +{ IOSPOOL *pool; + IOSCUT *cut; + IOSAIJ *aij; + struct info *info; + int k, kk, max_cuts, len, ret, *ind; + double *val, *work; + /* the current subproblem must exist */ + xassert(T->curr != NULL); + /* the pool must exist and be non-empty */ + pool = T->local; + xassert(pool != NULL); + xassert(pool->size > 0); + /* allocate working arrays */ + info = xcalloc(1+pool->size, sizeof(struct info)); + ind = xcalloc(1+T->n, sizeof(int)); + val = xcalloc(1+T->n, sizeof(double)); + work = xcalloc(1+T->n, sizeof(double)); + for (k = 1; k <= T->n; k++) work[k] = 0.0; + /* build the list of cuts stored in the cut pool */ + for (k = 0, cut = pool->head; cut != NULL; cut = cut->next) + k++, info[k].cut = cut, info[k].flag = 0; + xassert(k == pool->size); + /* estimate efficiency of all cuts in the cut pool */ + for (k = 1; k <= pool->size; k++) + { double temp, dy, dz; + cut = info[k].cut; + /* build the vector of cut coefficients and compute its + Euclidean norm */ + len = 0; temp = 0.0; + for (aij = cut->ptr; aij != NULL; aij = aij->next) + { xassert(1 <= aij->j && aij->j <= T->n); + len++, ind[len] = aij->j, val[len] = aij->val; + temp += aij->val * aij->val; + } + if (temp < DBL_EPSILON * DBL_EPSILON) temp = DBL_EPSILON; + /* transform the cut to express it only through non-basic + (auxiliary and structural) variables */ + len = glp_transform_row(T->mip, len, ind, val); + /* determine change in the cut value and in the objective + value for the adjacent basis by simulating one step of the + dual simplex */ + ret = _glp_analyze_row(T->mip, len, ind, val, cut->type, + cut->rhs, 1e-9, NULL, NULL, NULL, NULL, &dy, &dz); + /* determine normalized residual and lower bound to objective + degradation */ + if (ret == 0) + { info[k].eff = fabs(dy) / sqrt(temp); + /* if some reduced costs violates (slightly) their zero + bounds (i.e. have wrong signs) due to round-off errors, + dz also may have wrong sign being close to zero */ + if (T->mip->dir == GLP_MIN) + { if (dz < 0.0) dz = 0.0; + info[k].deg = + dz; + } + else /* GLP_MAX */ + { if (dz > 0.0) dz = 0.0; + info[k].deg = - dz; + } + } + else if (ret == 1) + { /* the constraint is not violated at the current point */ + info[k].eff = info[k].deg = 0.0; + } + else if (ret == 2) + { /* no dual feasible adjacent basis exists */ + info[k].eff = 1.0; + info[k].deg = DBL_MAX; + } + else + xassert(ret != ret); + /* if the degradation is too small, just ignore it */ + if (info[k].deg < 0.01) info[k].deg = 0.0; + } + /* sort the list of cuts by decreasing objective degradation and + then by decreasing efficacy */ + qsort(&info[1], pool->size, sizeof(struct info), fcmp); + /* only first (most efficient) max_cuts in the list are qualified + as candidates to be added to the current subproblem */ + max_cuts = (T->curr->level == 0 ? 90 : 10); + if (max_cuts > pool->size) max_cuts = pool->size; + /* add cuts to the current subproblem */ +#if 0 + xprintf("*** adding cuts ***\n"); +#endif + for (k = 1; k <= max_cuts; k++) + { int i, len; + /* if this cut seems to be inefficient, skip it */ + if (info[k].deg < 0.01 && info[k].eff < 0.01) continue; + /* if the angle between this cut and every other cut included + in the current subproblem is small, skip this cut */ + for (kk = 1; kk < k; kk++) + { if (info[kk].flag) + { if (parallel(info[k].cut, info[kk].cut, work) > 0.90) + break; + } + } + if (kk < k) continue; + /* add this cut to the current subproblem */ +#if 0 + xprintf("eff = %g; deg = %g\n", info[k].eff, info[k].deg); +#endif + cut = info[k].cut, info[k].flag = 1; + i = glp_add_rows(T->mip, 1); + if (cut->name != NULL) + glp_set_row_name(T->mip, i, cut->name); + xassert(T->mip->row[i]->origin == GLP_RF_CUT); + T->mip->row[i]->klass = cut->klass; + len = 0; + for (aij = cut->ptr; aij != NULL; aij = aij->next) + len++, ind[len] = aij->j, val[len] = aij->val; + glp_set_mat_row(T->mip, i, len, ind, val); + xassert(cut->type == GLP_LO || cut->type == GLP_UP); + glp_set_row_bnds(T->mip, i, cut->type, cut->rhs, cut->rhs); + } + /* free working arrays */ + xfree(info); + xfree(ind); + xfree(val); + xfree(work); + return; +} + +#if 0 +/*********************************************************************** +* Given a cut a * x >= b (<= b) the routine efficacy computes the cut +* efficacy as follows: +* +* eff = d * (a * x~ - b) / ||a||, +* +* where d is -1 (in case of '>= b') or +1 (in case of '<= b'), x~ is +* the vector of values of structural variables in optimal solution to +* LP relaxation of the current subproblem, ||a|| is the Euclidean norm +* of the vector of cut coefficients. +* +* If the cut is violated at point x~, the efficacy eff is positive, +* and its value is the Euclidean distance between x~ and the cut plane +* a * x = b in the space of structural variables. +* +* Following geometrical intuition, it is quite natural to consider +* this distance as a first-order measure of the expected efficacy of +* the cut: the larger the distance the better the cut [1]. */ + +static double efficacy(glp_tree *T, IOSCUT *cut) +{ glp_prob *mip = T->mip; + IOSAIJ *aij; + double s = 0.0, t = 0.0, temp; + for (aij = cut->ptr; aij != NULL; aij = aij->next) + { xassert(1 <= aij->j && aij->j <= mip->n); + s += aij->val * mip->col[aij->j]->prim; + t += aij->val * aij->val; + } + temp = sqrt(t); + if (temp < DBL_EPSILON) temp = DBL_EPSILON; + if (cut->type == GLP_LO) + temp = (s >= cut->rhs ? 0.0 : (cut->rhs - s) / temp); + else if (cut->type == GLP_UP) + temp = (s <= cut->rhs ? 0.0 : (s - cut->rhs) / temp); + else + xassert(cut != cut); + return temp; +} +#endif + +/*********************************************************************** +* Given two cuts a1 * x >= b1 (<= b1) and a2 * x >= b2 (<= b2) the +* routine parallel computes the cosine of angle between the cut planes +* a1 * x = b1 and a2 * x = b2 (which is the acute angle between two +* normals to these planes) in the space of structural variables as +* follows: +* +* cos phi = (a1' * a2) / (||a1|| * ||a2||), +* +* where (a1' * a2) is a dot product of vectors of cut coefficients, +* ||a1|| and ||a2|| are Euclidean norms of vectors a1 and a2. +* +* Note that requirement cos phi = 0 forces the cuts to be orthogonal, +* i.e. with disjoint support, while requirement cos phi <= 0.999 means +* only avoiding duplicate (parallel) cuts [1]. */ + +static double parallel(IOSCUT *a, IOSCUT *b, double work[]) +{ IOSAIJ *aij; + double s = 0.0, sa = 0.0, sb = 0.0, temp; + for (aij = a->ptr; aij != NULL; aij = aij->next) + { work[aij->j] = aij->val; + sa += aij->val * aij->val; + } + for (aij = b->ptr; aij != NULL; aij = aij->next) + { s += work[aij->j] * aij->val; + sb += aij->val * aij->val; + } + for (aij = a->ptr; aij != NULL; aij = aij->next) + work[aij->j] = 0.0; + temp = sqrt(sa) * sqrt(sb); + if (temp < DBL_EPSILON * DBL_EPSILON) temp = DBL_EPSILON; + return s / temp; +} + +/* eof */