diff -r d59bea55db9b -r c445c931472f src/glplib01.c --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/glplib01.c Mon Dec 06 13:09:21 2010 +0100 @@ -0,0 +1,287 @@ +/* glplib01.c (bignum arithmetic) */ + +/*********************************************************************** +* This code is part of GLPK (GNU Linear Programming Kit). +* +* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, +* 2009, 2010 Andrew Makhorin, Department for Applied Informatics, +* Moscow Aviation Institute, Moscow, Russia. All rights reserved. +* E-mail: . +* +* GLPK is free software: you can redistribute it and/or modify it +* under the terms of the GNU General Public License as published by +* the Free Software Foundation, either version 3 of the License, or +* (at your option) any later version. +* +* GLPK is distributed in the hope that it will be useful, but WITHOUT +* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY +* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public +* License for more details. +* +* You should have received a copy of the GNU General Public License +* along with GLPK. If not, see . +***********************************************************************/ + +#include "glpenv.h" +#include "glplib.h" + +/*********************************************************************** +* Two routines below are intended to multiply and divide unsigned +* integer numbers of arbitrary precision. +* +* The routines assume that an unsigned integer number is represented in +* the positional numeral system with the base 2^16 = 65536, i.e. each +* "digit" of the number is in the range [0, 65535] and represented as +* a 16-bit value of the unsigned short type. In other words, a number x +* has the following representation: +* +* n-1 +* x = sum d[j] * 65536^j, +* j=0 +* +* where n is the number of places (positions), and d[j] is j-th "digit" +* of x, 0 <= d[j] <= 65535. +***********************************************************************/ + +/*********************************************************************** +* NAME +* +* bigmul - multiply unsigned integer numbers of arbitrary precision +* +* SYNOPSIS +* +* #include "glplib.h" +* void bigmul(int n, int m, unsigned short x[], unsigned short y[]); +* +* DESCRIPTION +* +* The routine bigmul multiplies unsigned integer numbers of arbitrary +* precision. +* +* n is the number of digits of multiplicand, n >= 1; +* +* m is the number of digits of multiplier, m >= 1; +* +* x is an array containing digits of the multiplicand in elements +* x[m], x[m+1], ..., x[n+m-1]. Contents of x[0], x[1], ..., x[m-1] are +* ignored on entry. +* +* y is an array containing digits of the multiplier in elements y[0], +* y[1], ..., y[m-1]. +* +* On exit digits of the product are stored in elements x[0], x[1], ..., +* x[n+m-1]. The array y is not changed. */ + +void bigmul(int n, int m, unsigned short x[], unsigned short y[]) +{ int i, j; + unsigned int t; + xassert(n >= 1); + xassert(m >= 1); + for (j = 0; j < m; j++) x[j] = 0; + for (i = 0; i < n; i++) + { if (x[i+m]) + { t = 0; + for (j = 0; j < m; j++) + { t += (unsigned int)x[i+m] * (unsigned int)y[j] + + (unsigned int)x[i+j]; + x[i+j] = (unsigned short)t; + t >>= 16; + } + x[i+m] = (unsigned short)t; + } + } + return; +} + +/*********************************************************************** +* NAME +* +* bigdiv - divide unsigned integer numbers of arbitrary precision +* +* SYNOPSIS +* +* #include "glplib.h" +* void bigdiv(int n, int m, unsigned short x[], unsigned short y[]); +* +* DESCRIPTION +* +* The routine bigdiv divides one unsigned integer number of arbitrary +* precision by another with the algorithm described in [1]. +* +* n is the difference between the number of digits of dividend and the +* number of digits of divisor, n >= 0. +* +* m is the number of digits of divisor, m >= 1. +* +* x is an array containing digits of the dividend in elements x[0], +* x[1], ..., x[n+m-1]. +* +* y is an array containing digits of the divisor in elements y[0], +* y[1], ..., y[m-1]. The highest digit y[m-1] must be non-zero. +* +* On exit n+1 digits of the quotient are stored in elements x[m], +* x[m+1], ..., x[n+m], and m digits of the remainder are stored in +* elements x[0], x[1], ..., x[m-1]. The array y is changed but then +* restored. +* +* REFERENCES +* +* 1. D. Knuth. The Art of Computer Programming. Vol. 2: Seminumerical +* Algorithms. Stanford University, 1969. */ + +void bigdiv(int n, int m, unsigned short x[], unsigned short y[]) +{ int i, j; + unsigned int t; + unsigned short d, q, r; + xassert(n >= 0); + xassert(m >= 1); + xassert(y[m-1] != 0); + /* special case when divisor has the only digit */ + if (m == 1) + { d = 0; + for (i = n; i >= 0; i--) + { t = ((unsigned int)d << 16) + (unsigned int)x[i]; + x[i+1] = (unsigned short)(t / y[0]); + d = (unsigned short)(t % y[0]); + } + x[0] = d; + goto done; + } + /* multiply dividend and divisor by a normalizing coefficient in + order to provide the condition y[m-1] >= base / 2 */ + d = (unsigned short)(0x10000 / ((unsigned int)y[m-1] + 1)); + if (d == 1) + x[n+m] = 0; + else + { t = 0; + for (i = 0; i < n+m; i++) + { t += (unsigned int)x[i] * (unsigned int)d; + x[i] = (unsigned short)t; + t >>= 16; + } + x[n+m] = (unsigned short)t; + t = 0; + for (j = 0; j < m; j++) + { t += (unsigned int)y[j] * (unsigned int)d; + y[j] = (unsigned short)t; + t >>= 16; + } + } + /* main loop */ + for (i = n; i >= 0; i--) + { /* estimate and correct the current digit of quotient */ + if (x[i+m] < y[m-1]) + { t = ((unsigned int)x[i+m] << 16) + (unsigned int)x[i+m-1]; + q = (unsigned short)(t / (unsigned int)y[m-1]); + r = (unsigned short)(t % (unsigned int)y[m-1]); + if (q == 0) goto putq; else goto test; + } + q = 0; + r = x[i+m-1]; +decr: q--; /* if q = 0 then q-- = 0xFFFF */ + t = (unsigned int)r + (unsigned int)y[m-1]; + r = (unsigned short)t; + if (t > 0xFFFF) goto msub; +test: t = (unsigned int)y[m-2] * (unsigned int)q; + if ((unsigned short)(t >> 16) > r) goto decr; + if ((unsigned short)(t >> 16) < r) goto msub; + if ((unsigned short)t > x[i+m-2]) goto decr; +msub: /* now subtract divisor multiplied by the current digit of + quotient from the current dividend */ + if (q == 0) goto putq; + t = 0; + for (j = 0; j < m; j++) + { t += (unsigned int)y[j] * (unsigned int)q; + if (x[i+j] < (unsigned short)t) t += 0x10000; + x[i+j] -= (unsigned short)t; + t >>= 16; + } + if (x[i+m] >= (unsigned short)t) goto putq; + /* perform correcting addition, because the current digit of + quotient is greater by one than its correct value */ + q--; + t = 0; + for (j = 0; j < m; j++) + { t += (unsigned int)x[i+j] + (unsigned int)y[j]; + x[i+j] = (unsigned short)t; + t >>= 16; + } +putq: /* store the current digit of quotient */ + x[i+m] = q; + } + /* divide divisor and remainder by the normalizing coefficient in + order to restore their original values */ + if (d > 1) + { t = 0; + for (i = m-1; i >= 0; i--) + { t = (t << 16) + (unsigned int)x[i]; + x[i] = (unsigned short)(t / (unsigned int)d); + t %= (unsigned int)d; + } + t = 0; + for (j = m-1; j >= 0; j--) + { t = (t << 16) + (unsigned int)y[j]; + y[j] = (unsigned short)(t / (unsigned int)d); + t %= (unsigned int)d; + } + } +done: return; +} + +/**********************************************************************/ + +#if 0 +#include +#include +#include +#include "glprng.h" + +#define N_MAX 7 +/* maximal number of digits in multiplicand */ + +#define M_MAX 5 +/* maximal number of digits in multiplier */ + +#define N_TEST 1000000 +/* number of tests */ + +int main(void) +{ RNG *rand; + int d, j, n, m, test; + unsigned short x[N_MAX], y[M_MAX], z[N_MAX+M_MAX]; + rand = rng_create_rand(); + for (test = 1; test <= N_TEST; test++) + { /* x[0,...,n-1] := multiplicand */ + n = 1 + rng_unif_rand(rand, N_MAX-1); + assert(1 <= n && n <= N_MAX); + for (j = 0; j < n; j++) + { d = rng_unif_rand(rand, 65536); + assert(0 <= d && d <= 65535); + x[j] = (unsigned short)d; + } + /* y[0,...,m-1] := multiplier */ + m = 1 + rng_unif_rand(rand, M_MAX-1); + assert(1 <= m && m <= M_MAX); + for (j = 0; j < m; j++) + { d = rng_unif_rand(rand, 65536); + assert(0 <= d && d <= 65535); + y[j] = (unsigned short)d; + } + if (y[m-1] == 0) y[m-1] = 1; + /* z[0,...,n+m-1] := x * y */ + for (j = 0; j < n; j++) z[m+j] = x[j]; + bigmul(n, m, z, y); + /* z[0,...,m-1] := z mod y, z[m,...,n+m-1] := z div y */ + bigdiv(n, m, z, y); + /* z mod y must be 0 */ + for (j = 0; j < m; j++) assert(z[j] == 0); + /* z div y must be x */ + for (j = 0; j < n; j++) assert(z[m+j] == x[j]); + } + fprintf(stderr, "%d tests successfully passed\n", N_TEST); + rng_delete_rand(rand); + return 0; +} +#endif + +/* eof */