diff -r d59bea55db9b -r c445c931472f src/glpnet08.c --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/glpnet08.c Mon Dec 06 13:09:21 2010 +0100 @@ -0,0 +1,241 @@ +/* glpnet08.c */ + +/*********************************************************************** +* This code is part of GLPK (GNU Linear Programming Kit). +* +* Two subroutines sub() and wclique() below are intended to find a +* maximum weight clique in a given undirected graph. These subroutines +* are slightly modified version of the program WCLIQUE developed by +* Patric Ostergard and based +* on ideas from the article "P. R. J. Ostergard, A new algorithm for +* the maximum-weight clique problem, submitted for publication", which +* in turn is a generalization of the algorithm for unweighted graphs +* presented in "P. R. J. Ostergard, A fast algorithm for the maximum +* clique problem, submitted for publication". +* +* USED WITH PERMISSION OF THE AUTHOR OF THE ORIGINAL CODE. +* +* Changes were made by Andrew Makhorin . +* +* GLPK is free software: you can redistribute it and/or modify it +* under the terms of the GNU General Public License as published by +* the Free Software Foundation, either version 3 of the License, or +* (at your option) any later version. +* +* GLPK is distributed in the hope that it will be useful, but WITHOUT +* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY +* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public +* License for more details. +* +* You should have received a copy of the GNU General Public License +* along with GLPK. If not, see . +***********************************************************************/ + +#include "glpenv.h" +#include "glpnet.h" + +/*********************************************************************** +* NAME +* +* wclique - find maximum weight clique with Ostergard's algorithm +* +* SYNOPSIS +* +* int wclique(int n, const int w[], const unsigned char a[], +* int ind[]); +* +* DESCRIPTION +* +* The routine wclique finds a maximum weight clique in an undirected +* graph with Ostergard's algorithm. +* +* INPUT PARAMETERS +* +* n is the number of vertices, n > 0. +* +* w[i], i = 1,...,n, is a weight of vertex i. +* +* a[*] is the strict (without main diagonal) lower triangle of the +* graph adjacency matrix in packed format. +* +* OUTPUT PARAMETER +* +* ind[k], k = 1,...,size, is the number of a vertex included in the +* clique found, 1 <= ind[k] <= n, where size is the number of vertices +* in the clique returned on exit. +* +* RETURNS +* +* The routine returns the clique size, i.e. the number of vertices in +* the clique. */ + +struct csa +{ /* common storage area */ + int n; + /* number of vertices */ + const int *wt; /* int wt[0:n-1]; */ + /* weights */ + const unsigned char *a; + /* adjacency matrix (packed lower triangle without main diag.) */ + int record; + /* weight of best clique */ + int rec_level; + /* number of vertices in best clique */ + int *rec; /* int rec[0:n-1]; */ + /* best clique so far */ + int *clique; /* int clique[0:n-1]; */ + /* table for pruning */ + int *set; /* int set[0:n-1]; */ + /* current clique */ +}; + +#define n (csa->n) +#define wt (csa->wt) +#define a (csa->a) +#define record (csa->record) +#define rec_level (csa->rec_level) +#define rec (csa->rec) +#define clique (csa->clique) +#define set (csa->set) + +#if 0 +static int is_edge(struct csa *csa, int i, int j) +{ /* if there is arc (i,j), the routine returns true; otherwise + false; 0 <= i, j < n */ + int k; + xassert(0 <= i && i < n); + xassert(0 <= j && j < n); + if (i == j) return 0; + if (i < j) k = i, i = j, j = k; + k = (i * (i - 1)) / 2 + j; + return a[k / CHAR_BIT] & + (unsigned char)(1 << ((CHAR_BIT - 1) - k % CHAR_BIT)); +} +#else +#define is_edge(csa, i, j) ((i) == (j) ? 0 : \ + (i) > (j) ? is_edge1(i, j) : is_edge1(j, i)) +#define is_edge1(i, j) is_edge2(((i) * ((i) - 1)) / 2 + (j)) +#define is_edge2(k) (a[(k) / CHAR_BIT] & \ + (unsigned char)(1 << ((CHAR_BIT - 1) - (k) % CHAR_BIT))) +#endif + +static void sub(struct csa *csa, int ct, int table[], int level, + int weight, int l_weight) +{ int i, j, k, curr_weight, left_weight, *p1, *p2, *newtable; + newtable = xcalloc(n, sizeof(int)); + if (ct <= 0) + { /* 0 or 1 elements left; include these */ + if (ct == 0) + { set[level++] = table[0]; + weight += l_weight; + } + if (weight > record) + { record = weight; + rec_level = level; + for (i = 0; i < level; i++) rec[i] = set[i]; + } + goto done; + } + for (i = ct; i >= 0; i--) + { if ((level == 0) && (i < ct)) goto done; + k = table[i]; + if ((level > 0) && (clique[k] <= (record - weight))) + goto done; /* prune */ + set[level] = k; + curr_weight = weight + wt[k]; + l_weight -= wt[k]; + if (l_weight <= (record - curr_weight)) + goto done; /* prune */ + p1 = newtable; + p2 = table; + left_weight = 0; + while (p2 < table + i) + { j = *p2++; + if (is_edge(csa, j, k)) + { *p1++ = j; + left_weight += wt[j]; + } + } + if (left_weight <= (record - curr_weight)) continue; + sub(csa, p1 - newtable - 1, newtable, level + 1, curr_weight, + left_weight); + } +done: xfree(newtable); + return; +} + +int wclique(int _n, const int w[], const unsigned char _a[], int ind[]) +{ struct csa _csa, *csa = &_csa; + int i, j, p, max_wt, max_nwt, wth, *used, *nwt, *pos; + glp_long timer; + n = _n; + xassert(n > 0); + wt = &w[1]; + a = _a; + record = 0; + rec_level = 0; + rec = &ind[1]; + clique = xcalloc(n, sizeof(int)); + set = xcalloc(n, sizeof(int)); + used = xcalloc(n, sizeof(int)); + nwt = xcalloc(n, sizeof(int)); + pos = xcalloc(n, sizeof(int)); + /* start timer */ + timer = xtime(); + /* order vertices */ + for (i = 0; i < n; i++) + { nwt[i] = 0; + for (j = 0; j < n; j++) + if (is_edge(csa, i, j)) nwt[i] += wt[j]; + } + for (i = 0; i < n; i++) + used[i] = 0; + for (i = n-1; i >= 0; i--) + { max_wt = -1; + max_nwt = -1; + for (j = 0; j < n; j++) + { if ((!used[j]) && ((wt[j] > max_wt) || (wt[j] == max_wt + && nwt[j] > max_nwt))) + { max_wt = wt[j]; + max_nwt = nwt[j]; + p = j; + } + } + pos[i] = p; + used[p] = 1; + for (j = 0; j < n; j++) + if ((!used[j]) && (j != p) && (is_edge(csa, p, j))) + nwt[j] -= wt[p]; + } + /* main routine */ + wth = 0; + for (i = 0; i < n; i++) + { wth += wt[pos[i]]; + sub(csa, i, pos, 0, 0, wth); + clique[pos[i]] = record; + if (xdifftime(xtime(), timer) >= 5.0 - 0.001) + { /* print current record and reset timer */ + xprintf("level = %d (%d); best = %d\n", i+1, n, record); + timer = xtime(); + } + } + xfree(clique); + xfree(set); + xfree(used); + xfree(nwt); + xfree(pos); + /* return the solution found */ + for (i = 1; i <= rec_level; i++) ind[i]++; + return rec_level; +} + +#undef n +#undef wt +#undef a +#undef record +#undef rec_level +#undef rec +#undef clique +#undef set + +/* eof */