diff -r d59bea55db9b -r c445c931472f src/glpssx01.c --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/glpssx01.c Mon Dec 06 13:09:21 2010 +0100 @@ -0,0 +1,839 @@ +/* glpssx01.c */ + +/*********************************************************************** +* This code is part of GLPK (GNU Linear Programming Kit). +* +* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, +* 2009, 2010 Andrew Makhorin, Department for Applied Informatics, +* Moscow Aviation Institute, Moscow, Russia. All rights reserved. +* E-mail: . +* +* GLPK is free software: you can redistribute it and/or modify it +* under the terms of the GNU General Public License as published by +* the Free Software Foundation, either version 3 of the License, or +* (at your option) any later version. +* +* GLPK is distributed in the hope that it will be useful, but WITHOUT +* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY +* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public +* License for more details. +* +* You should have received a copy of the GNU General Public License +* along with GLPK. If not, see . +***********************************************************************/ + +#include "glpenv.h" +#include "glpssx.h" +#define xfault xerror + +/*---------------------------------------------------------------------- +// ssx_create - create simplex solver workspace. +// +// This routine creates the workspace used by simplex solver routines, +// and returns a pointer to it. +// +// Parameters m, n, and nnz specify, respectively, the number of rows, +// columns, and non-zero constraint coefficients. +// +// This routine only allocates the memory for the workspace components, +// so the workspace needs to be saturated by data. */ + +SSX *ssx_create(int m, int n, int nnz) +{ SSX *ssx; + int i, j, k; + if (m < 1) + xfault("ssx_create: m = %d; invalid number of rows\n", m); + if (n < 1) + xfault("ssx_create: n = %d; invalid number of columns\n", n); + if (nnz < 0) + xfault("ssx_create: nnz = %d; invalid number of non-zero const" + "raint coefficients\n", nnz); + ssx = xmalloc(sizeof(SSX)); + ssx->m = m; + ssx->n = n; + ssx->type = xcalloc(1+m+n, sizeof(int)); + ssx->lb = xcalloc(1+m+n, sizeof(mpq_t)); + for (k = 1; k <= m+n; k++) mpq_init(ssx->lb[k]); + ssx->ub = xcalloc(1+m+n, sizeof(mpq_t)); + for (k = 1; k <= m+n; k++) mpq_init(ssx->ub[k]); + ssx->coef = xcalloc(1+m+n, sizeof(mpq_t)); + for (k = 0; k <= m+n; k++) mpq_init(ssx->coef[k]); + ssx->A_ptr = xcalloc(1+n+1, sizeof(int)); + ssx->A_ptr[n+1] = nnz+1; + ssx->A_ind = xcalloc(1+nnz, sizeof(int)); + ssx->A_val = xcalloc(1+nnz, sizeof(mpq_t)); + for (k = 1; k <= nnz; k++) mpq_init(ssx->A_val[k]); + ssx->stat = xcalloc(1+m+n, sizeof(int)); + ssx->Q_row = xcalloc(1+m+n, sizeof(int)); + ssx->Q_col = xcalloc(1+m+n, sizeof(int)); + ssx->binv = bfx_create_binv(); + ssx->bbar = xcalloc(1+m, sizeof(mpq_t)); + for (i = 0; i <= m; i++) mpq_init(ssx->bbar[i]); + ssx->pi = xcalloc(1+m, sizeof(mpq_t)); + for (i = 1; i <= m; i++) mpq_init(ssx->pi[i]); + ssx->cbar = xcalloc(1+n, sizeof(mpq_t)); + for (j = 1; j <= n; j++) mpq_init(ssx->cbar[j]); + ssx->rho = xcalloc(1+m, sizeof(mpq_t)); + for (i = 1; i <= m; i++) mpq_init(ssx->rho[i]); + ssx->ap = xcalloc(1+n, sizeof(mpq_t)); + for (j = 1; j <= n; j++) mpq_init(ssx->ap[j]); + ssx->aq = xcalloc(1+m, sizeof(mpq_t)); + for (i = 1; i <= m; i++) mpq_init(ssx->aq[i]); + mpq_init(ssx->delta); + return ssx; +} + +/*---------------------------------------------------------------------- +// ssx_factorize - factorize the current basis matrix. +// +// This routine computes factorization of the current basis matrix B +// and returns the singularity flag. If the matrix B is non-singular, +// the flag is zero, otherwise non-zero. */ + +static int basis_col(void *info, int j, int ind[], mpq_t val[]) +{ /* this auxiliary routine provides row indices and numeric values + of non-zero elements in j-th column of the matrix B */ + SSX *ssx = info; + int m = ssx->m; + int n = ssx->n; + int *A_ptr = ssx->A_ptr; + int *A_ind = ssx->A_ind; + mpq_t *A_val = ssx->A_val; + int *Q_col = ssx->Q_col; + int k, len, ptr; + xassert(1 <= j && j <= m); + k = Q_col[j]; /* x[k] = xB[j] */ + xassert(1 <= k && k <= m+n); + /* j-th column of the matrix B is k-th column of the augmented + constraint matrix (I | -A) */ + if (k <= m) + { /* it is a column of the unity matrix I */ + len = 1, ind[1] = k, mpq_set_si(val[1], 1, 1); + } + else + { /* it is a column of the original constraint matrix -A */ + len = 0; + for (ptr = A_ptr[k-m]; ptr < A_ptr[k-m+1]; ptr++) + { len++; + ind[len] = A_ind[ptr]; + mpq_neg(val[len], A_val[ptr]); + } + } + return len; +} + +int ssx_factorize(SSX *ssx) +{ int ret; + ret = bfx_factorize(ssx->binv, ssx->m, basis_col, ssx); + return ret; +} + +/*---------------------------------------------------------------------- +// ssx_get_xNj - determine value of non-basic variable. +// +// This routine determines the value of non-basic variable xN[j] in the +// current basic solution defined as follows: +// +// 0, if xN[j] is free variable +// lN[j], if xN[j] is on its lower bound +// uN[j], if xN[j] is on its upper bound +// lN[j] = uN[j], if xN[j] is fixed variable +// +// where lN[j] and uN[j] are lower and upper bounds of xN[j]. */ + +void ssx_get_xNj(SSX *ssx, int j, mpq_t x) +{ int m = ssx->m; + int n = ssx->n; + mpq_t *lb = ssx->lb; + mpq_t *ub = ssx->ub; + int *stat = ssx->stat; + int *Q_col = ssx->Q_col; + int k; + xassert(1 <= j && j <= n); + k = Q_col[m+j]; /* x[k] = xN[j] */ + xassert(1 <= k && k <= m+n); + switch (stat[k]) + { case SSX_NL: + /* xN[j] is on its lower bound */ + mpq_set(x, lb[k]); break; + case SSX_NU: + /* xN[j] is on its upper bound */ + mpq_set(x, ub[k]); break; + case SSX_NF: + /* xN[j] is free variable */ + mpq_set_si(x, 0, 1); break; + case SSX_NS: + /* xN[j] is fixed variable */ + mpq_set(x, lb[k]); break; + default: + xassert(stat != stat); + } + return; +} + +/*---------------------------------------------------------------------- +// ssx_eval_bbar - compute values of basic variables. +// +// This routine computes values of basic variables xB in the current +// basic solution as follows: +// +// beta = - inv(B) * N * xN, +// +// where B is the basis matrix, N is the matrix of non-basic columns, +// xN is a vector of current values of non-basic variables. */ + +void ssx_eval_bbar(SSX *ssx) +{ int m = ssx->m; + int n = ssx->n; + mpq_t *coef = ssx->coef; + int *A_ptr = ssx->A_ptr; + int *A_ind = ssx->A_ind; + mpq_t *A_val = ssx->A_val; + int *Q_col = ssx->Q_col; + mpq_t *bbar = ssx->bbar; + int i, j, k, ptr; + mpq_t x, temp; + mpq_init(x); + mpq_init(temp); + /* bbar := 0 */ + for (i = 1; i <= m; i++) + mpq_set_si(bbar[i], 0, 1); + /* bbar := - N * xN = - N[1] * xN[1] - ... - N[n] * xN[n] */ + for (j = 1; j <= n; j++) + { ssx_get_xNj(ssx, j, x); + if (mpq_sgn(x) == 0) continue; + k = Q_col[m+j]; /* x[k] = xN[j] */ + if (k <= m) + { /* N[j] is a column of the unity matrix I */ + mpq_sub(bbar[k], bbar[k], x); + } + else + { /* N[j] is a column of the original constraint matrix -A */ + for (ptr = A_ptr[k-m]; ptr < A_ptr[k-m+1]; ptr++) + { mpq_mul(temp, A_val[ptr], x); + mpq_add(bbar[A_ind[ptr]], bbar[A_ind[ptr]], temp); + } + } + } + /* bbar := inv(B) * bbar */ + bfx_ftran(ssx->binv, bbar, 0); +#if 1 + /* compute value of the objective function */ + /* bbar[0] := c[0] */ + mpq_set(bbar[0], coef[0]); + /* bbar[0] := bbar[0] + sum{i in B} cB[i] * xB[i] */ + for (i = 1; i <= m; i++) + { k = Q_col[i]; /* x[k] = xB[i] */ + if (mpq_sgn(coef[k]) == 0) continue; + mpq_mul(temp, coef[k], bbar[i]); + mpq_add(bbar[0], bbar[0], temp); + } + /* bbar[0] := bbar[0] + sum{j in N} cN[j] * xN[j] */ + for (j = 1; j <= n; j++) + { k = Q_col[m+j]; /* x[k] = xN[j] */ + if (mpq_sgn(coef[k]) == 0) continue; + ssx_get_xNj(ssx, j, x); + mpq_mul(temp, coef[k], x); + mpq_add(bbar[0], bbar[0], temp); + } +#endif + mpq_clear(x); + mpq_clear(temp); + return; +} + +/*---------------------------------------------------------------------- +// ssx_eval_pi - compute values of simplex multipliers. +// +// This routine computes values of simplex multipliers (shadow prices) +// pi in the current basic solution as follows: +// +// pi = inv(B') * cB, +// +// where B' is a matrix transposed to the basis matrix B, cB is a vector +// of objective coefficients at basic variables xB. */ + +void ssx_eval_pi(SSX *ssx) +{ int m = ssx->m; + mpq_t *coef = ssx->coef; + int *Q_col = ssx->Q_col; + mpq_t *pi = ssx->pi; + int i; + /* pi := cB */ + for (i = 1; i <= m; i++) mpq_set(pi[i], coef[Q_col[i]]); + /* pi := inv(B') * cB */ + bfx_btran(ssx->binv, pi); + return; +} + +/*---------------------------------------------------------------------- +// ssx_eval_dj - compute reduced cost of non-basic variable. +// +// This routine computes reduced cost d[j] of non-basic variable xN[j] +// in the current basic solution as follows: +// +// d[j] = cN[j] - N[j] * pi, +// +// where cN[j] is an objective coefficient at xN[j], N[j] is a column +// of the augmented constraint matrix (I | -A) corresponding to xN[j], +// pi is the vector of simplex multipliers (shadow prices). */ + +void ssx_eval_dj(SSX *ssx, int j, mpq_t dj) +{ int m = ssx->m; + int n = ssx->n; + mpq_t *coef = ssx->coef; + int *A_ptr = ssx->A_ptr; + int *A_ind = ssx->A_ind; + mpq_t *A_val = ssx->A_val; + int *Q_col = ssx->Q_col; + mpq_t *pi = ssx->pi; + int k, ptr, end; + mpq_t temp; + mpq_init(temp); + xassert(1 <= j && j <= n); + k = Q_col[m+j]; /* x[k] = xN[j] */ + xassert(1 <= k && k <= m+n); + /* j-th column of the matrix N is k-th column of the augmented + constraint matrix (I | -A) */ + if (k <= m) + { /* it is a column of the unity matrix I */ + mpq_sub(dj, coef[k], pi[k]); + } + else + { /* it is a column of the original constraint matrix -A */ + mpq_set(dj, coef[k]); + for (ptr = A_ptr[k-m], end = A_ptr[k-m+1]; ptr < end; ptr++) + { mpq_mul(temp, A_val[ptr], pi[A_ind[ptr]]); + mpq_add(dj, dj, temp); + } + } + mpq_clear(temp); + return; +} + +/*---------------------------------------------------------------------- +// ssx_eval_cbar - compute reduced costs of all non-basic variables. +// +// This routine computes the vector of reduced costs pi in the current +// basic solution for all non-basic variables, including fixed ones. */ + +void ssx_eval_cbar(SSX *ssx) +{ int n = ssx->n; + mpq_t *cbar = ssx->cbar; + int j; + for (j = 1; j <= n; j++) + ssx_eval_dj(ssx, j, cbar[j]); + return; +} + +/*---------------------------------------------------------------------- +// ssx_eval_rho - compute p-th row of the inverse. +// +// This routine computes p-th row of the matrix inv(B), where B is the +// current basis matrix. +// +// p-th row of the inverse is computed using the following formula: +// +// rho = inv(B') * e[p], +// +// where B' is a matrix transposed to B, e[p] is a unity vector, which +// contains one in p-th position. */ + +void ssx_eval_rho(SSX *ssx) +{ int m = ssx->m; + int p = ssx->p; + mpq_t *rho = ssx->rho; + int i; + xassert(1 <= p && p <= m); + /* rho := 0 */ + for (i = 1; i <= m; i++) mpq_set_si(rho[i], 0, 1); + /* rho := e[p] */ + mpq_set_si(rho[p], 1, 1); + /* rho := inv(B') * rho */ + bfx_btran(ssx->binv, rho); + return; +} + +/*---------------------------------------------------------------------- +// ssx_eval_row - compute pivot row of the simplex table. +// +// This routine computes p-th (pivot) row of the current simplex table +// A~ = - inv(B) * N using the following formula: +// +// A~[p] = - N' * inv(B') * e[p] = - N' * rho[p], +// +// where N' is a matrix transposed to the matrix N, rho[p] is p-th row +// of the inverse inv(B). */ + +void ssx_eval_row(SSX *ssx) +{ int m = ssx->m; + int n = ssx->n; + int *A_ptr = ssx->A_ptr; + int *A_ind = ssx->A_ind; + mpq_t *A_val = ssx->A_val; + int *Q_col = ssx->Q_col; + mpq_t *rho = ssx->rho; + mpq_t *ap = ssx->ap; + int j, k, ptr; + mpq_t temp; + mpq_init(temp); + for (j = 1; j <= n; j++) + { /* ap[j] := - N'[j] * rho (inner product) */ + k = Q_col[m+j]; /* x[k] = xN[j] */ + if (k <= m) + mpq_neg(ap[j], rho[k]); + else + { mpq_set_si(ap[j], 0, 1); + for (ptr = A_ptr[k-m]; ptr < A_ptr[k-m+1]; ptr++) + { mpq_mul(temp, A_val[ptr], rho[A_ind[ptr]]); + mpq_add(ap[j], ap[j], temp); + } + } + } + mpq_clear(temp); + return; +} + +/*---------------------------------------------------------------------- +// ssx_eval_col - compute pivot column of the simplex table. +// +// This routine computes q-th (pivot) column of the current simplex +// table A~ = - inv(B) * N using the following formula: +// +// A~[q] = - inv(B) * N[q], +// +// where N[q] is q-th column of the matrix N corresponding to chosen +// non-basic variable xN[q]. */ + +void ssx_eval_col(SSX *ssx) +{ int m = ssx->m; + int n = ssx->n; + int *A_ptr = ssx->A_ptr; + int *A_ind = ssx->A_ind; + mpq_t *A_val = ssx->A_val; + int *Q_col = ssx->Q_col; + int q = ssx->q; + mpq_t *aq = ssx->aq; + int i, k, ptr; + xassert(1 <= q && q <= n); + /* aq := 0 */ + for (i = 1; i <= m; i++) mpq_set_si(aq[i], 0, 1); + /* aq := N[q] */ + k = Q_col[m+q]; /* x[k] = xN[q] */ + if (k <= m) + { /* N[q] is a column of the unity matrix I */ + mpq_set_si(aq[k], 1, 1); + } + else + { /* N[q] is a column of the original constraint matrix -A */ + for (ptr = A_ptr[k-m]; ptr < A_ptr[k-m+1]; ptr++) + mpq_neg(aq[A_ind[ptr]], A_val[ptr]); + } + /* aq := inv(B) * aq */ + bfx_ftran(ssx->binv, aq, 1); + /* aq := - aq */ + for (i = 1; i <= m; i++) mpq_neg(aq[i], aq[i]); + return; +} + +/*---------------------------------------------------------------------- +// ssx_chuzc - choose pivot column. +// +// This routine chooses non-basic variable xN[q] whose reduced cost +// indicates possible improving of the objective function to enter it +// in the basis. +// +// Currently the standard (textbook) pricing is used, i.e. that +// non-basic variable is preferred which has greatest reduced cost (in +// magnitude). +// +// If xN[q] has been chosen, the routine stores its number q and also +// sets the flag q_dir that indicates direction in which xN[q] has to +// change (+1 means increasing, -1 means decreasing). +// +// If the choice cannot be made, because the current basic solution is +// dual feasible, the routine sets the number q to 0. */ + +void ssx_chuzc(SSX *ssx) +{ int m = ssx->m; + int n = ssx->n; + int dir = (ssx->dir == SSX_MIN ? +1 : -1); + int *Q_col = ssx->Q_col; + int *stat = ssx->stat; + mpq_t *cbar = ssx->cbar; + int j, k, s, q, q_dir; + double best, temp; + /* nothing is chosen so far */ + q = 0, q_dir = 0, best = 0.0; + /* look through the list of non-basic variables */ + for (j = 1; j <= n; j++) + { k = Q_col[m+j]; /* x[k] = xN[j] */ + s = dir * mpq_sgn(cbar[j]); + if ((stat[k] == SSX_NF || stat[k] == SSX_NL) && s < 0 || + (stat[k] == SSX_NF || stat[k] == SSX_NU) && s > 0) + { /* reduced cost of xN[j] indicates possible improving of + the objective function */ + temp = fabs(mpq_get_d(cbar[j])); + xassert(temp != 0.0); + if (q == 0 || best < temp) + q = j, q_dir = - s, best = temp; + } + } + ssx->q = q, ssx->q_dir = q_dir; + return; +} + +/*---------------------------------------------------------------------- +// ssx_chuzr - choose pivot row. +// +// This routine looks through elements of q-th column of the simplex +// table and chooses basic variable xB[p] which should leave the basis. +// +// The choice is based on the standard (textbook) ratio test. +// +// If xB[p] has been chosen, the routine stores its number p and also +// sets its non-basic status p_stat which should be assigned to xB[p] +// when it has left the basis and become xN[q]. +// +// Special case p < 0 means that xN[q] is double-bounded variable and +// it reaches its opposite bound before any basic variable does that, +// so the current basis remains unchanged. +// +// If the choice cannot be made, because xN[q] can infinitely change in +// the feasible direction, the routine sets the number p to 0. */ + +void ssx_chuzr(SSX *ssx) +{ int m = ssx->m; + int n = ssx->n; + int *type = ssx->type; + mpq_t *lb = ssx->lb; + mpq_t *ub = ssx->ub; + int *Q_col = ssx->Q_col; + mpq_t *bbar = ssx->bbar; + int q = ssx->q; + mpq_t *aq = ssx->aq; + int q_dir = ssx->q_dir; + int i, k, s, t, p, p_stat; + mpq_t teta, temp; + mpq_init(teta); + mpq_init(temp); + xassert(1 <= q && q <= n); + xassert(q_dir == +1 || q_dir == -1); + /* nothing is chosen so far */ + p = 0, p_stat = 0; + /* look through the list of basic variables */ + for (i = 1; i <= m; i++) + { s = q_dir * mpq_sgn(aq[i]); + if (s < 0) + { /* xB[i] decreases */ + k = Q_col[i]; /* x[k] = xB[i] */ + t = type[k]; + if (t == SSX_LO || t == SSX_DB || t == SSX_FX) + { /* xB[i] has finite lower bound */ + mpq_sub(temp, bbar[i], lb[k]); + mpq_div(temp, temp, aq[i]); + mpq_abs(temp, temp); + if (p == 0 || mpq_cmp(teta, temp) > 0) + { p = i; + p_stat = (t == SSX_FX ? SSX_NS : SSX_NL); + mpq_set(teta, temp); + } + } + } + else if (s > 0) + { /* xB[i] increases */ + k = Q_col[i]; /* x[k] = xB[i] */ + t = type[k]; + if (t == SSX_UP || t == SSX_DB || t == SSX_FX) + { /* xB[i] has finite upper bound */ + mpq_sub(temp, bbar[i], ub[k]); + mpq_div(temp, temp, aq[i]); + mpq_abs(temp, temp); + if (p == 0 || mpq_cmp(teta, temp) > 0) + { p = i; + p_stat = (t == SSX_FX ? SSX_NS : SSX_NU); + mpq_set(teta, temp); + } + } + } + /* if something has been chosen and the ratio test indicates + exact degeneracy, the search can be finished */ + if (p != 0 && mpq_sgn(teta) == 0) break; + } + /* if xN[q] is double-bounded, check if it can reach its opposite + bound before any basic variable */ + k = Q_col[m+q]; /* x[k] = xN[q] */ + if (type[k] == SSX_DB) + { mpq_sub(temp, ub[k], lb[k]); + if (p == 0 || mpq_cmp(teta, temp) > 0) + { p = -1; + p_stat = -1; + mpq_set(teta, temp); + } + } + ssx->p = p; + ssx->p_stat = p_stat; + /* if xB[p] has been chosen, determine its actual change in the + adjacent basis (it has the same sign as q_dir) */ + if (p != 0) + { xassert(mpq_sgn(teta) >= 0); + if (q_dir > 0) + mpq_set(ssx->delta, teta); + else + mpq_neg(ssx->delta, teta); + } + mpq_clear(teta); + mpq_clear(temp); + return; +} + +/*---------------------------------------------------------------------- +// ssx_update_bbar - update values of basic variables. +// +// This routine recomputes the current values of basic variables for +// the adjacent basis. +// +// The simplex table for the current basis is the following: +// +// xB[i] = sum{j in 1..n} alfa[i,j] * xN[q], i = 1,...,m +// +// therefore +// +// delta xB[i] = alfa[i,q] * delta xN[q], i = 1,...,m +// +// where delta xN[q] = xN.new[q] - xN[q] is the change of xN[q] in the +// adjacent basis, and delta xB[i] = xB.new[i] - xB[i] is the change of +// xB[i]. This gives formulae for recomputing values of xB[i]: +// +// xB.new[p] = xN[q] + delta xN[q] +// +// (because xN[q] becomes xB[p] in the adjacent basis), and +// +// xB.new[i] = xB[i] + alfa[i,q] * delta xN[q], i != p +// +// for other basic variables. */ + +void ssx_update_bbar(SSX *ssx) +{ int m = ssx->m; + int n = ssx->n; + mpq_t *bbar = ssx->bbar; + mpq_t *cbar = ssx->cbar; + int p = ssx->p; + int q = ssx->q; + mpq_t *aq = ssx->aq; + int i; + mpq_t temp; + mpq_init(temp); + xassert(1 <= q && q <= n); + if (p < 0) + { /* xN[q] is double-bounded and goes to its opposite bound */ + /* nop */; + } + else + { /* xN[q] becomes xB[p] in the adjacent basis */ + /* xB.new[p] = xN[q] + delta xN[q] */ + xassert(1 <= p && p <= m); + ssx_get_xNj(ssx, q, temp); + mpq_add(bbar[p], temp, ssx->delta); + } + /* update values of other basic variables depending on xN[q] */ + for (i = 1; i <= m; i++) + { if (i == p) continue; + /* xB.new[i] = xB[i] + alfa[i,q] * delta xN[q] */ + if (mpq_sgn(aq[i]) == 0) continue; + mpq_mul(temp, aq[i], ssx->delta); + mpq_add(bbar[i], bbar[i], temp); + } +#if 1 + /* update value of the objective function */ + /* z.new = z + d[q] * delta xN[q] */ + mpq_mul(temp, cbar[q], ssx->delta); + mpq_add(bbar[0], bbar[0], temp); +#endif + mpq_clear(temp); + return; +} + +/*---------------------------------------------------------------------- +-- ssx_update_pi - update simplex multipliers. +-- +-- This routine recomputes the vector of simplex multipliers for the +-- adjacent basis. */ + +void ssx_update_pi(SSX *ssx) +{ int m = ssx->m; + int n = ssx->n; + mpq_t *pi = ssx->pi; + mpq_t *cbar = ssx->cbar; + int p = ssx->p; + int q = ssx->q; + mpq_t *aq = ssx->aq; + mpq_t *rho = ssx->rho; + int i; + mpq_t new_dq, temp; + mpq_init(new_dq); + mpq_init(temp); + xassert(1 <= p && p <= m); + xassert(1 <= q && q <= n); + /* compute d[q] in the adjacent basis */ + mpq_div(new_dq, cbar[q], aq[p]); + /* update the vector of simplex multipliers */ + for (i = 1; i <= m; i++) + { if (mpq_sgn(rho[i]) == 0) continue; + mpq_mul(temp, new_dq, rho[i]); + mpq_sub(pi[i], pi[i], temp); + } + mpq_clear(new_dq); + mpq_clear(temp); + return; +} + +/*---------------------------------------------------------------------- +// ssx_update_cbar - update reduced costs of non-basic variables. +// +// This routine recomputes the vector of reduced costs of non-basic +// variables for the adjacent basis. */ + +void ssx_update_cbar(SSX *ssx) +{ int m = ssx->m; + int n = ssx->n; + mpq_t *cbar = ssx->cbar; + int p = ssx->p; + int q = ssx->q; + mpq_t *ap = ssx->ap; + int j; + mpq_t temp; + mpq_init(temp); + xassert(1 <= p && p <= m); + xassert(1 <= q && q <= n); + /* compute d[q] in the adjacent basis */ + /* d.new[q] = d[q] / alfa[p,q] */ + mpq_div(cbar[q], cbar[q], ap[q]); + /* update reduced costs of other non-basic variables */ + for (j = 1; j <= n; j++) + { if (j == q) continue; + /* d.new[j] = d[j] - (alfa[p,j] / alfa[p,q]) * d[q] */ + if (mpq_sgn(ap[j]) == 0) continue; + mpq_mul(temp, ap[j], cbar[q]); + mpq_sub(cbar[j], cbar[j], temp); + } + mpq_clear(temp); + return; +} + +/*---------------------------------------------------------------------- +// ssx_change_basis - change current basis to adjacent one. +// +// This routine changes the current basis to the adjacent one swapping +// basic variable xB[p] and non-basic variable xN[q]. */ + +void ssx_change_basis(SSX *ssx) +{ int m = ssx->m; + int n = ssx->n; + int *type = ssx->type; + int *stat = ssx->stat; + int *Q_row = ssx->Q_row; + int *Q_col = ssx->Q_col; + int p = ssx->p; + int q = ssx->q; + int p_stat = ssx->p_stat; + int k, kp, kq; + if (p < 0) + { /* special case: xN[q] goes to its opposite bound */ + xassert(1 <= q && q <= n); + k = Q_col[m+q]; /* x[k] = xN[q] */ + xassert(type[k] == SSX_DB); + switch (stat[k]) + { case SSX_NL: + stat[k] = SSX_NU; + break; + case SSX_NU: + stat[k] = SSX_NL; + break; + default: + xassert(stat != stat); + } + } + else + { /* xB[p] leaves the basis, xN[q] enters the basis */ + xassert(1 <= p && p <= m); + xassert(1 <= q && q <= n); + kp = Q_col[p]; /* x[kp] = xB[p] */ + kq = Q_col[m+q]; /* x[kq] = xN[q] */ + /* check non-basic status of xB[p] which becomes xN[q] */ + switch (type[kp]) + { case SSX_FR: + xassert(p_stat == SSX_NF); + break; + case SSX_LO: + xassert(p_stat == SSX_NL); + break; + case SSX_UP: + xassert(p_stat == SSX_NU); + break; + case SSX_DB: + xassert(p_stat == SSX_NL || p_stat == SSX_NU); + break; + case SSX_FX: + xassert(p_stat == SSX_NS); + break; + default: + xassert(type != type); + } + /* swap xB[p] and xN[q] */ + stat[kp] = (char)p_stat, stat[kq] = SSX_BS; + Q_row[kp] = m+q, Q_row[kq] = p; + Q_col[p] = kq, Q_col[m+q] = kp; + /* update factorization of the basis matrix */ + if (bfx_update(ssx->binv, p)) + { if (ssx_factorize(ssx)) + xassert(("Internal error: basis matrix is singular", 0)); + } + } + return; +} + +/*---------------------------------------------------------------------- +// ssx_delete - delete simplex solver workspace. +// +// This routine deletes the simplex solver workspace freeing all the +// memory allocated to this object. */ + +void ssx_delete(SSX *ssx) +{ int m = ssx->m; + int n = ssx->n; + int nnz = ssx->A_ptr[n+1]-1; + int i, j, k; + xfree(ssx->type); + for (k = 1; k <= m+n; k++) mpq_clear(ssx->lb[k]); + xfree(ssx->lb); + for (k = 1; k <= m+n; k++) mpq_clear(ssx->ub[k]); + xfree(ssx->ub); + for (k = 0; k <= m+n; k++) mpq_clear(ssx->coef[k]); + xfree(ssx->coef); + xfree(ssx->A_ptr); + xfree(ssx->A_ind); + for (k = 1; k <= nnz; k++) mpq_clear(ssx->A_val[k]); + xfree(ssx->A_val); + xfree(ssx->stat); + xfree(ssx->Q_row); + xfree(ssx->Q_col); + bfx_delete_binv(ssx->binv); + for (i = 0; i <= m; i++) mpq_clear(ssx->bbar[i]); + xfree(ssx->bbar); + for (i = 1; i <= m; i++) mpq_clear(ssx->pi[i]); + xfree(ssx->pi); + for (j = 1; j <= n; j++) mpq_clear(ssx->cbar[j]); + xfree(ssx->cbar); + for (i = 1; i <= m; i++) mpq_clear(ssx->rho[i]); + xfree(ssx->rho); + for (j = 1; j <= n; j++) mpq_clear(ssx->ap[j]); + xfree(ssx->ap); + for (i = 1; i <= m; i++) mpq_clear(ssx->aq[i]); + xfree(ssx->aq); + mpq_clear(ssx->delta); + xfree(ssx); + return; +} + +/* eof */