lemon/cost_scaling.h
author convert-repo
Thu, 04 Mar 2010 19:34:55 +0000
changeset 2659 611ced85018b
parent 2625 c51b320bc51c
permissions -rw-r--r--
update tags
kpeter@2577
     1
/* -*- C++ -*-
kpeter@2577
     2
 *
kpeter@2577
     3
 * This file is a part of LEMON, a generic C++ optimization library
kpeter@2577
     4
 *
kpeter@2577
     5
 * Copyright (C) 2003-2008
kpeter@2577
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
kpeter@2577
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
kpeter@2577
     8
 *
kpeter@2577
     9
 * Permission to use, modify and distribute this software is granted
kpeter@2577
    10
 * provided that this copyright notice appears in all copies. For
kpeter@2577
    11
 * precise terms see the accompanying LICENSE file.
kpeter@2577
    12
 *
kpeter@2577
    13
 * This software is provided "AS IS" with no warranty of any kind,
kpeter@2577
    14
 * express or implied, and with no claim as to its suitability for any
kpeter@2577
    15
 * purpose.
kpeter@2577
    16
 *
kpeter@2577
    17
 */
kpeter@2577
    18
kpeter@2577
    19
#ifndef LEMON_COST_SCALING_H
kpeter@2577
    20
#define LEMON_COST_SCALING_H
kpeter@2577
    21
kpeter@2577
    22
/// \ingroup min_cost_flow
kpeter@2577
    23
/// \file
kpeter@2577
    24
/// \brief Cost scaling algorithm for finding a minimum cost flow.
kpeter@2577
    25
kpeter@2577
    26
#include <deque>
kpeter@2577
    27
#include <lemon/graph_adaptor.h>
kpeter@2577
    28
#include <lemon/graph_utils.h>
kpeter@2577
    29
#include <lemon/maps.h>
kpeter@2577
    30
#include <lemon/math.h>
kpeter@2577
    31
kpeter@2577
    32
#include <lemon/circulation.h>
kpeter@2577
    33
#include <lemon/bellman_ford.h>
kpeter@2577
    34
kpeter@2577
    35
namespace lemon {
kpeter@2577
    36
kpeter@2577
    37
  /// \addtogroup min_cost_flow
kpeter@2577
    38
  /// @{
kpeter@2577
    39
kpeter@2577
    40
  /// \brief Implementation of the cost scaling algorithm for finding a
kpeter@2577
    41
  /// minimum cost flow.
kpeter@2577
    42
  ///
kpeter@2577
    43
  /// \ref CostScaling implements the cost scaling algorithm performing
kpeter@2625
    44
  /// augment/push and relabel operations for finding a minimum cost
kpeter@2577
    45
  /// flow.
kpeter@2577
    46
  ///
kpeter@2577
    47
  /// \tparam Graph The directed graph type the algorithm runs on.
kpeter@2577
    48
  /// \tparam LowerMap The type of the lower bound map.
kpeter@2577
    49
  /// \tparam CapacityMap The type of the capacity (upper bound) map.
kpeter@2577
    50
  /// \tparam CostMap The type of the cost (length) map.
kpeter@2577
    51
  /// \tparam SupplyMap The type of the supply map.
kpeter@2577
    52
  ///
kpeter@2577
    53
  /// \warning
kpeter@2577
    54
  /// - Edge capacities and costs should be \e non-negative \e integers.
kpeter@2577
    55
  /// - Supply values should be \e signed \e integers.
kpeter@2581
    56
  /// - The value types of the maps should be convertible to each other.
kpeter@2581
    57
  /// - \c CostMap::Value must be signed type.
kpeter@2577
    58
  ///
kpeter@2577
    59
  /// \note Edge costs are multiplied with the number of nodes during
kpeter@2577
    60
  /// the algorithm so overflow problems may arise more easily than with
kpeter@2577
    61
  /// other minimum cost flow algorithms.
kpeter@2577
    62
  /// If it is available, <tt>long long int</tt> type is used instead of
kpeter@2577
    63
  /// <tt>long int</tt> in the inside computations.
kpeter@2577
    64
  ///
kpeter@2577
    65
  /// \author Peter Kovacs
kpeter@2577
    66
  template < typename Graph,
kpeter@2577
    67
             typename LowerMap = typename Graph::template EdgeMap<int>,
kpeter@2577
    68
             typename CapacityMap = typename Graph::template EdgeMap<int>,
kpeter@2577
    69
             typename CostMap = typename Graph::template EdgeMap<int>,
kpeter@2577
    70
             typename SupplyMap = typename Graph::template NodeMap<int> >
kpeter@2577
    71
  class CostScaling
kpeter@2577
    72
  {
kpeter@2577
    73
    GRAPH_TYPEDEFS(typename Graph);
kpeter@2577
    74
kpeter@2577
    75
    typedef typename CapacityMap::Value Capacity;
kpeter@2577
    76
    typedef typename CostMap::Value Cost;
kpeter@2577
    77
    typedef typename SupplyMap::Value Supply;
kpeter@2577
    78
    typedef typename Graph::template EdgeMap<Capacity> CapacityEdgeMap;
kpeter@2577
    79
    typedef typename Graph::template NodeMap<Supply> SupplyNodeMap;
kpeter@2577
    80
kpeter@2577
    81
    typedef ResGraphAdaptor< const Graph, Capacity,
kpeter@2577
    82
                             CapacityEdgeMap, CapacityEdgeMap > ResGraph;
kpeter@2577
    83
    typedef typename ResGraph::Edge ResEdge;
kpeter@2577
    84
kpeter@2577
    85
#if defined __GNUC__ && !defined __STRICT_ANSI__
kpeter@2577
    86
    typedef long long int LCost;
kpeter@2577
    87
#else
kpeter@2577
    88
    typedef long int LCost;
kpeter@2577
    89
#endif
kpeter@2577
    90
    typedef typename Graph::template EdgeMap<LCost> LargeCostMap;
kpeter@2577
    91
kpeter@2577
    92
  public:
kpeter@2577
    93
kpeter@2577
    94
    /// The type of the flow map.
kpeter@2581
    95
    typedef typename Graph::template EdgeMap<Capacity> FlowMap;
kpeter@2577
    96
    /// The type of the potential map.
kpeter@2577
    97
    typedef typename Graph::template NodeMap<LCost> PotentialMap;
kpeter@2577
    98
kpeter@2577
    99
  private:
kpeter@2577
   100
kpeter@2577
   101
    /// \brief Map adaptor class for handling residual edge costs.
kpeter@2577
   102
    ///
kpeter@2620
   103
    /// Map adaptor class for handling residual edge costs.
kpeter@2581
   104
    template <typename Map>
kpeter@2581
   105
    class ResidualCostMap : public MapBase<ResEdge, typename Map::Value>
kpeter@2577
   106
    {
kpeter@2577
   107
    private:
kpeter@2577
   108
kpeter@2581
   109
      const Map &_cost_map;
kpeter@2577
   110
kpeter@2577
   111
    public:
kpeter@2577
   112
kpeter@2577
   113
      ///\e
kpeter@2581
   114
      ResidualCostMap(const Map &cost_map) :
kpeter@2577
   115
        _cost_map(cost_map) {}
kpeter@2577
   116
kpeter@2577
   117
      ///\e
kpeter@2625
   118
      inline typename Map::Value operator[](const ResEdge &e) const {
kpeter@2625
   119
        return ResGraph::forward(e) ? _cost_map[e] : -_cost_map[e];
kpeter@2577
   120
      }
kpeter@2577
   121
kpeter@2577
   122
    }; //class ResidualCostMap
kpeter@2577
   123
kpeter@2577
   124
    /// \brief Map adaptor class for handling reduced edge costs.
kpeter@2577
   125
    ///
kpeter@2620
   126
    /// Map adaptor class for handling reduced edge costs.
kpeter@2577
   127
    class ReducedCostMap : public MapBase<Edge, LCost>
kpeter@2577
   128
    {
kpeter@2577
   129
    private:
kpeter@2577
   130
kpeter@2577
   131
      const Graph &_gr;
kpeter@2577
   132
      const LargeCostMap &_cost_map;
kpeter@2577
   133
      const PotentialMap &_pot_map;
kpeter@2577
   134
kpeter@2577
   135
    public:
kpeter@2577
   136
kpeter@2577
   137
      ///\e
kpeter@2577
   138
      ReducedCostMap( const Graph &gr,
kpeter@2577
   139
                      const LargeCostMap &cost_map,
kpeter@2577
   140
                      const PotentialMap &pot_map ) :
kpeter@2577
   141
        _gr(gr), _cost_map(cost_map), _pot_map(pot_map) {}
kpeter@2577
   142
kpeter@2577
   143
      ///\e
kpeter@2625
   144
      inline LCost operator[](const Edge &e) const {
kpeter@2577
   145
        return _cost_map[e] + _pot_map[_gr.source(e)]
kpeter@2577
   146
                            - _pot_map[_gr.target(e)];
kpeter@2577
   147
      }
kpeter@2577
   148
kpeter@2577
   149
    }; //class ReducedCostMap
kpeter@2577
   150
kpeter@2577
   151
  private:
kpeter@2577
   152
kpeter@2577
   153
    // The directed graph the algorithm runs on
kpeter@2577
   154
    const Graph &_graph;
kpeter@2577
   155
    // The original lower bound map
kpeter@2577
   156
    const LowerMap *_lower;
kpeter@2577
   157
    // The modified capacity map
kpeter@2577
   158
    CapacityEdgeMap _capacity;
kpeter@2577
   159
    // The original cost map
kpeter@2577
   160
    const CostMap &_orig_cost;
kpeter@2577
   161
    // The scaled cost map
kpeter@2577
   162
    LargeCostMap _cost;
kpeter@2577
   163
    // The modified supply map
kpeter@2577
   164
    SupplyNodeMap _supply;
kpeter@2577
   165
    bool _valid_supply;
kpeter@2577
   166
kpeter@2577
   167
    // Edge map of the current flow
kpeter@2581
   168
    FlowMap *_flow;
kpeter@2581
   169
    bool _local_flow;
kpeter@2577
   170
    // Node map of the current potentials
kpeter@2581
   171
    PotentialMap *_potential;
kpeter@2581
   172
    bool _local_potential;
kpeter@2577
   173
kpeter@2623
   174
    // The residual cost map
kpeter@2623
   175
    ResidualCostMap<LargeCostMap> _res_cost;
kpeter@2577
   176
    // The residual graph
kpeter@2581
   177
    ResGraph *_res_graph;
kpeter@2577
   178
    // The reduced cost map
kpeter@2581
   179
    ReducedCostMap *_red_cost;
kpeter@2577
   180
    // The excess map
kpeter@2577
   181
    SupplyNodeMap _excess;
kpeter@2577
   182
    // The epsilon parameter used for cost scaling
kpeter@2577
   183
    LCost _epsilon;
kpeter@2625
   184
    // The scaling factor
kpeter@2625
   185
    int _alpha;
kpeter@2577
   186
kpeter@2577
   187
  public:
kpeter@2577
   188
kpeter@2581
   189
    /// \brief General constructor (with lower bounds).
kpeter@2577
   190
    ///
kpeter@2581
   191
    /// General constructor (with lower bounds).
kpeter@2577
   192
    ///
kpeter@2577
   193
    /// \param graph The directed graph the algorithm runs on.
kpeter@2577
   194
    /// \param lower The lower bounds of the edges.
kpeter@2577
   195
    /// \param capacity The capacities (upper bounds) of the edges.
kpeter@2577
   196
    /// \param cost The cost (length) values of the edges.
kpeter@2577
   197
    /// \param supply The supply values of the nodes (signed).
kpeter@2577
   198
    CostScaling( const Graph &graph,
kpeter@2577
   199
                 const LowerMap &lower,
kpeter@2577
   200
                 const CapacityMap &capacity,
kpeter@2577
   201
                 const CostMap &cost,
kpeter@2577
   202
                 const SupplyMap &supply ) :
kpeter@2629
   203
      _graph(graph), _lower(&lower), _capacity(capacity), _orig_cost(cost),
kpeter@2629
   204
      _cost(graph), _supply(supply), _flow(NULL), _local_flow(false),
kpeter@2623
   205
      _potential(NULL), _local_potential(false), _res_cost(_cost),
kpeter@2623
   206
      _res_graph(NULL), _red_cost(NULL), _excess(graph, 0)
kpeter@2577
   207
    {
kpeter@2629
   208
      // Check the sum of supply values
kpeter@2629
   209
      Supply sum = 0;
kpeter@2629
   210
      for (NodeIt n(_graph); n != INVALID; ++n) sum += _supply[n];
kpeter@2629
   211
      _valid_supply = sum == 0;
kpeter@2629
   212
kpeter@2625
   213
      // Remove non-zero lower bounds
kpeter@2629
   214
      for (EdgeIt e(_graph); e != INVALID; ++e) {
kpeter@2629
   215
        if (lower[e] != 0) {
kpeter@2629
   216
          _capacity[e] -= lower[e];
kpeter@2629
   217
          _supply[_graph.source(e)] -= lower[e];
kpeter@2629
   218
          _supply[_graph.target(e)] += lower[e];
kpeter@2629
   219
        }
kpeter@2577
   220
      }
kpeter@2577
   221
    }
kpeter@2577
   222
kpeter@2581
   223
    /// \brief General constructor (without lower bounds).
kpeter@2577
   224
    ///
kpeter@2581
   225
    /// General constructor (without lower bounds).
kpeter@2577
   226
    ///
kpeter@2577
   227
    /// \param graph The directed graph the algorithm runs on.
kpeter@2577
   228
    /// \param capacity The capacities (upper bounds) of the edges.
kpeter@2577
   229
    /// \param cost The cost (length) values of the edges.
kpeter@2577
   230
    /// \param supply The supply values of the nodes (signed).
kpeter@2577
   231
    CostScaling( const Graph &graph,
kpeter@2577
   232
                 const CapacityMap &capacity,
kpeter@2577
   233
                 const CostMap &cost,
kpeter@2577
   234
                 const SupplyMap &supply ) :
kpeter@2577
   235
      _graph(graph), _lower(NULL), _capacity(capacity), _orig_cost(cost),
kpeter@2623
   236
      _cost(graph), _supply(supply), _flow(NULL), _local_flow(false),
kpeter@2623
   237
      _potential(NULL), _local_potential(false), _res_cost(_cost),
kpeter@2623
   238
      _res_graph(NULL), _red_cost(NULL), _excess(graph, 0)
kpeter@2577
   239
    {
kpeter@2625
   240
      // Check the sum of supply values
kpeter@2577
   241
      Supply sum = 0;
kpeter@2577
   242
      for (NodeIt n(_graph); n != INVALID; ++n) sum += _supply[n];
kpeter@2577
   243
      _valid_supply = sum == 0;
kpeter@2577
   244
    }
kpeter@2577
   245
kpeter@2581
   246
    /// \brief Simple constructor (with lower bounds).
kpeter@2577
   247
    ///
kpeter@2581
   248
    /// Simple constructor (with lower bounds).
kpeter@2577
   249
    ///
kpeter@2577
   250
    /// \param graph The directed graph the algorithm runs on.
kpeter@2577
   251
    /// \param lower The lower bounds of the edges.
kpeter@2577
   252
    /// \param capacity The capacities (upper bounds) of the edges.
kpeter@2577
   253
    /// \param cost The cost (length) values of the edges.
kpeter@2577
   254
    /// \param s The source node.
kpeter@2577
   255
    /// \param t The target node.
kpeter@2577
   256
    /// \param flow_value The required amount of flow from node \c s
kpeter@2577
   257
    /// to node \c t (i.e. the supply of \c s and the demand of \c t).
kpeter@2577
   258
    CostScaling( const Graph &graph,
kpeter@2577
   259
                 const LowerMap &lower,
kpeter@2577
   260
                 const CapacityMap &capacity,
kpeter@2577
   261
                 const CostMap &cost,
kpeter@2577
   262
                 Node s, Node t,
kpeter@2577
   263
                 Supply flow_value ) :
kpeter@2629
   264
      _graph(graph), _lower(&lower), _capacity(capacity), _orig_cost(cost),
kpeter@2629
   265
      _cost(graph), _supply(graph, 0), _flow(NULL), _local_flow(false),
kpeter@2623
   266
      _potential(NULL), _local_potential(false), _res_cost(_cost),
kpeter@2623
   267
      _res_graph(NULL), _red_cost(NULL), _excess(graph, 0)
kpeter@2577
   268
    {
kpeter@2629
   269
      // Remove non-zero lower bounds
kpeter@2629
   270
      _supply[s] =  flow_value;
kpeter@2629
   271
      _supply[t] = -flow_value;
kpeter@2629
   272
      for (EdgeIt e(_graph); e != INVALID; ++e) {
kpeter@2629
   273
        if (lower[e] != 0) {
kpeter@2629
   274
          _capacity[e] -= lower[e];
kpeter@2629
   275
          _supply[_graph.source(e)] -= lower[e];
kpeter@2629
   276
          _supply[_graph.target(e)] += lower[e];
kpeter@2629
   277
        }
kpeter@2577
   278
      }
kpeter@2577
   279
      _valid_supply = true;
kpeter@2577
   280
    }
kpeter@2577
   281
kpeter@2581
   282
    /// \brief Simple constructor (without lower bounds).
kpeter@2577
   283
    ///
kpeter@2581
   284
    /// Simple constructor (without lower bounds).
kpeter@2577
   285
    ///
kpeter@2577
   286
    /// \param graph The directed graph the algorithm runs on.
kpeter@2577
   287
    /// \param capacity The capacities (upper bounds) of the edges.
kpeter@2577
   288
    /// \param cost The cost (length) values of the edges.
kpeter@2577
   289
    /// \param s The source node.
kpeter@2577
   290
    /// \param t The target node.
kpeter@2577
   291
    /// \param flow_value The required amount of flow from node \c s
kpeter@2577
   292
    /// to node \c t (i.e. the supply of \c s and the demand of \c t).
kpeter@2577
   293
    CostScaling( const Graph &graph,
kpeter@2577
   294
                 const CapacityMap &capacity,
kpeter@2577
   295
                 const CostMap &cost,
kpeter@2577
   296
                 Node s, Node t,
kpeter@2577
   297
                 Supply flow_value ) :
kpeter@2577
   298
      _graph(graph), _lower(NULL), _capacity(capacity), _orig_cost(cost),
kpeter@2623
   299
      _cost(graph), _supply(graph, 0), _flow(NULL), _local_flow(false),
kpeter@2623
   300
      _potential(NULL), _local_potential(false), _res_cost(_cost),
kpeter@2623
   301
      _res_graph(NULL), _red_cost(NULL), _excess(graph, 0)
kpeter@2577
   302
    {
kpeter@2577
   303
      _supply[s] =  flow_value;
kpeter@2577
   304
      _supply[t] = -flow_value;
kpeter@2577
   305
      _valid_supply = true;
kpeter@2577
   306
    }
kpeter@2577
   307
kpeter@2581
   308
    /// Destructor.
kpeter@2581
   309
    ~CostScaling() {
kpeter@2581
   310
      if (_local_flow) delete _flow;
kpeter@2581
   311
      if (_local_potential) delete _potential;
kpeter@2581
   312
      delete _res_graph;
kpeter@2581
   313
      delete _red_cost;
kpeter@2581
   314
    }
kpeter@2581
   315
kpeter@2620
   316
    /// \brief Set the flow map.
kpeter@2581
   317
    ///
kpeter@2620
   318
    /// Set the flow map.
kpeter@2581
   319
    ///
kpeter@2581
   320
    /// \return \c (*this)
kpeter@2581
   321
    CostScaling& flowMap(FlowMap &map) {
kpeter@2581
   322
      if (_local_flow) {
kpeter@2581
   323
        delete _flow;
kpeter@2581
   324
        _local_flow = false;
kpeter@2581
   325
      }
kpeter@2581
   326
      _flow = &map;
kpeter@2581
   327
      return *this;
kpeter@2581
   328
    }
kpeter@2581
   329
kpeter@2620
   330
    /// \brief Set the potential map.
kpeter@2581
   331
    ///
kpeter@2620
   332
    /// Set the potential map.
kpeter@2581
   333
    ///
kpeter@2581
   334
    /// \return \c (*this)
kpeter@2581
   335
    CostScaling& potentialMap(PotentialMap &map) {
kpeter@2581
   336
      if (_local_potential) {
kpeter@2581
   337
        delete _potential;
kpeter@2581
   338
        _local_potential = false;
kpeter@2581
   339
      }
kpeter@2581
   340
      _potential = &map;
kpeter@2581
   341
      return *this;
kpeter@2581
   342
    }
kpeter@2581
   343
kpeter@2581
   344
    /// \name Execution control
kpeter@2581
   345
kpeter@2581
   346
    /// @{
kpeter@2581
   347
kpeter@2620
   348
    /// \brief Run the algorithm.
kpeter@2577
   349
    ///
kpeter@2620
   350
    /// Run the algorithm.
kpeter@2577
   351
    ///
kpeter@2625
   352
    /// \param partial_augment By default the algorithm performs
kpeter@2625
   353
    /// partial augment and relabel operations in the cost scaling
kpeter@2625
   354
    /// phases. Set this parameter to \c false for using local push and
kpeter@2625
   355
    /// relabel operations instead.
kpeter@2625
   356
    ///
kpeter@2577
   357
    /// \return \c true if a feasible flow can be found.
kpeter@2625
   358
    bool run(bool partial_augment = true) {
kpeter@2625
   359
      if (partial_augment) {
kpeter@2625
   360
        return init() && startPartialAugment();
kpeter@2625
   361
      } else {
kpeter@2625
   362
        return init() && startPushRelabel();
kpeter@2625
   363
      }
kpeter@2577
   364
    }
kpeter@2577
   365
kpeter@2581
   366
    /// @}
kpeter@2581
   367
kpeter@2581
   368
    /// \name Query Functions
kpeter@2581
   369
    /// The result of the algorithm can be obtained using these
kpeter@2620
   370
    /// functions.\n
kpeter@2620
   371
    /// \ref lemon::CostScaling::run() "run()" must be called before
kpeter@2620
   372
    /// using them.
kpeter@2581
   373
kpeter@2581
   374
    /// @{
kpeter@2581
   375
kpeter@2620
   376
    /// \brief Return a const reference to the edge map storing the
kpeter@2577
   377
    /// found flow.
kpeter@2577
   378
    ///
kpeter@2620
   379
    /// Return a const reference to the edge map storing the found flow.
kpeter@2577
   380
    ///
kpeter@2577
   381
    /// \pre \ref run() must be called before using this function.
kpeter@2577
   382
    const FlowMap& flowMap() const {
kpeter@2581
   383
      return *_flow;
kpeter@2577
   384
    }
kpeter@2577
   385
kpeter@2620
   386
    /// \brief Return a const reference to the node map storing the
kpeter@2577
   387
    /// found potentials (the dual solution).
kpeter@2577
   388
    ///
kpeter@2620
   389
    /// Return a const reference to the node map storing the found
kpeter@2577
   390
    /// potentials (the dual solution).
kpeter@2577
   391
    ///
kpeter@2577
   392
    /// \pre \ref run() must be called before using this function.
kpeter@2577
   393
    const PotentialMap& potentialMap() const {
kpeter@2581
   394
      return *_potential;
kpeter@2581
   395
    }
kpeter@2581
   396
kpeter@2620
   397
    /// \brief Return the flow on the given edge.
kpeter@2581
   398
    ///
kpeter@2620
   399
    /// Return the flow on the given edge.
kpeter@2581
   400
    ///
kpeter@2581
   401
    /// \pre \ref run() must be called before using this function.
kpeter@2581
   402
    Capacity flow(const Edge& edge) const {
kpeter@2581
   403
      return (*_flow)[edge];
kpeter@2581
   404
    }
kpeter@2581
   405
kpeter@2620
   406
    /// \brief Return the potential of the given node.
kpeter@2581
   407
    ///
kpeter@2620
   408
    /// Return the potential of the given node.
kpeter@2581
   409
    ///
kpeter@2581
   410
    /// \pre \ref run() must be called before using this function.
kpeter@2581
   411
    Cost potential(const Node& node) const {
kpeter@2581
   412
      return (*_potential)[node];
kpeter@2577
   413
    }
kpeter@2577
   414
kpeter@2620
   415
    /// \brief Return the total cost of the found flow.
kpeter@2577
   416
    ///
kpeter@2620
   417
    /// Return the total cost of the found flow. The complexity of the
kpeter@2577
   418
    /// function is \f$ O(e) \f$.
kpeter@2577
   419
    ///
kpeter@2577
   420
    /// \pre \ref run() must be called before using this function.
kpeter@2577
   421
    Cost totalCost() const {
kpeter@2577
   422
      Cost c = 0;
kpeter@2577
   423
      for (EdgeIt e(_graph); e != INVALID; ++e)
kpeter@2581
   424
        c += (*_flow)[e] * _orig_cost[e];
kpeter@2577
   425
      return c;
kpeter@2577
   426
    }
kpeter@2577
   427
kpeter@2581
   428
    /// @}
kpeter@2581
   429
kpeter@2577
   430
  private:
kpeter@2577
   431
kpeter@2620
   432
    /// Initialize the algorithm.
kpeter@2577
   433
    bool init() {
kpeter@2577
   434
      if (!_valid_supply) return false;
kpeter@2625
   435
      // The scaling factor
kpeter@2625
   436
      _alpha = 8;
kpeter@2577
   437
kpeter@2625
   438
      // Initialize flow and potential maps
kpeter@2581
   439
      if (!_flow) {
kpeter@2581
   440
        _flow = new FlowMap(_graph);
kpeter@2581
   441
        _local_flow = true;
kpeter@2581
   442
      }
kpeter@2581
   443
      if (!_potential) {
kpeter@2581
   444
        _potential = new PotentialMap(_graph);
kpeter@2581
   445
        _local_potential = true;
kpeter@2581
   446
      }
kpeter@2581
   447
kpeter@2581
   448
      _red_cost = new ReducedCostMap(_graph, _cost, *_potential);
kpeter@2581
   449
      _res_graph = new ResGraph(_graph, _capacity, *_flow);
kpeter@2581
   450
kpeter@2625
   451
      // Initialize the scaled cost map and the epsilon parameter
kpeter@2577
   452
      Cost max_cost = 0;
kpeter@2577
   453
      int node_num = countNodes(_graph);
kpeter@2577
   454
      for (EdgeIt e(_graph); e != INVALID; ++e) {
kpeter@2625
   455
        _cost[e] = LCost(_orig_cost[e]) * node_num * _alpha;
kpeter@2577
   456
        if (_orig_cost[e] > max_cost) max_cost = _orig_cost[e];
kpeter@2577
   457
      }
kpeter@2577
   458
      _epsilon = max_cost * node_num;
kpeter@2577
   459
kpeter@2625
   460
      // Find a feasible flow using Circulation
kpeter@2577
   461
      Circulation< Graph, ConstMap<Edge, Capacity>, CapacityEdgeMap,
kpeter@2577
   462
                   SupplyMap >
kpeter@2581
   463
        circulation( _graph, constMap<Edge>(Capacity(0)), _capacity,
kpeter@2577
   464
                     _supply );
kpeter@2581
   465
      return circulation.flowMap(*_flow).run();
kpeter@2577
   466
    }
kpeter@2577
   467
kpeter@2625
   468
    /// Execute the algorithm performing partial augmentation and
kpeter@2625
   469
    /// relabel operations.
kpeter@2625
   470
    bool startPartialAugment() {
kpeter@2625
   471
      // Paramters for heuristics
kpeter@2625
   472
      const int BF_HEURISTIC_EPSILON_BOUND = 1000;
kpeter@2625
   473
      const int BF_HEURISTIC_BOUND_FACTOR  = 3;
kpeter@2625
   474
      // Maximum augment path length
kpeter@2625
   475
      const int MAX_PATH_LENGTH = 4;
kpeter@2577
   476
kpeter@2625
   477
      // Variables
kpeter@2625
   478
      typename Graph::template NodeMap<Edge> pred_edge(_graph);
kpeter@2625
   479
      typename Graph::template NodeMap<bool> forward(_graph);
kpeter@2625
   480
      typename Graph::template NodeMap<OutEdgeIt> next_out(_graph);
kpeter@2625
   481
      typename Graph::template NodeMap<InEdgeIt> next_in(_graph);
kpeter@2625
   482
      typename Graph::template NodeMap<bool> next_dir(_graph);
kpeter@2577
   483
      std::deque<Node> active_nodes;
kpeter@2625
   484
      std::vector<Node> path_nodes;
kpeter@2577
   485
kpeter@2577
   486
      int node_num = countNodes(_graph);
kpeter@2625
   487
      for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
kpeter@2625
   488
                                        1 : _epsilon / _alpha )
kpeter@2577
   489
      {
kpeter@2625
   490
        // "Early Termination" heuristic: use Bellman-Ford algorithm
kpeter@2625
   491
        // to check if the current flow is optimal
kpeter@2577
   492
        if (_epsilon <= BF_HEURISTIC_EPSILON_BOUND) {
kpeter@2581
   493
          typedef ShiftMap< ResidualCostMap<LargeCostMap> > ShiftCostMap;
kpeter@2625
   494
          ShiftCostMap shift_cost(_res_cost, 1);
kpeter@2581
   495
          BellmanFord<ResGraph, ShiftCostMap> bf(*_res_graph, shift_cost);
kpeter@2577
   496
          bf.init(0);
kpeter@2577
   497
          bool done = false;
kpeter@2577
   498
          int K = int(BF_HEURISTIC_BOUND_FACTOR * sqrt(node_num));
kpeter@2577
   499
          for (int i = 0; i < K && !done; ++i)
kpeter@2577
   500
            done = bf.processNextWeakRound();
kpeter@2625
   501
          if (done) break;
kpeter@2577
   502
        }
kpeter@2577
   503
kpeter@2625
   504
        // Saturate edges not satisfying the optimality condition
kpeter@2577
   505
        Capacity delta;
kpeter@2577
   506
        for (EdgeIt e(_graph); e != INVALID; ++e) {
kpeter@2581
   507
          if (_capacity[e] - (*_flow)[e] > 0 && (*_red_cost)[e] < 0) {
kpeter@2581
   508
            delta = _capacity[e] - (*_flow)[e];
kpeter@2577
   509
            _excess[_graph.source(e)] -= delta;
kpeter@2577
   510
            _excess[_graph.target(e)] += delta;
kpeter@2581
   511
            (*_flow)[e] = _capacity[e];
kpeter@2577
   512
          }
kpeter@2581
   513
          if ((*_flow)[e] > 0 && -(*_red_cost)[e] < 0) {
kpeter@2581
   514
            _excess[_graph.target(e)] -= (*_flow)[e];
kpeter@2581
   515
            _excess[_graph.source(e)] += (*_flow)[e];
kpeter@2581
   516
            (*_flow)[e] = 0;
kpeter@2577
   517
          }
kpeter@2577
   518
        }
kpeter@2577
   519
kpeter@2625
   520
        // Find active nodes (i.e. nodes with positive excess)
kpeter@2625
   521
        for (NodeIt n(_graph); n != INVALID; ++n) {
kpeter@2577
   522
          if (_excess[n] > 0) active_nodes.push_back(n);
kpeter@2625
   523
        }
kpeter@2577
   524
kpeter@2625
   525
        // Initialize the next edge maps
kpeter@2625
   526
        for (NodeIt n(_graph); n != INVALID; ++n) {
kpeter@2625
   527
          next_out[n] = OutEdgeIt(_graph, n);
kpeter@2625
   528
          next_in[n] = InEdgeIt(_graph, n);
kpeter@2625
   529
          next_dir[n] = true;
kpeter@2625
   530
        }
kpeter@2625
   531
kpeter@2625
   532
        // Perform partial augment and relabel operations
kpeter@2577
   533
        while (active_nodes.size() > 0) {
kpeter@2625
   534
          // Select an active node (FIFO selection)
kpeter@2625
   535
          if (_excess[active_nodes[0]] <= 0) {
kpeter@2625
   536
            active_nodes.pop_front();
kpeter@2625
   537
            continue;
kpeter@2625
   538
          }
kpeter@2625
   539
          Node start = active_nodes[0];
kpeter@2625
   540
          path_nodes.clear();
kpeter@2625
   541
          path_nodes.push_back(start);
kpeter@2625
   542
kpeter@2625
   543
          // Find an augmenting path from the start node
kpeter@2625
   544
          Node u, tip = start;
kpeter@2625
   545
          LCost min_red_cost;
kpeter@2625
   546
          while ( _excess[tip] >= 0 &&
kpeter@2625
   547
                  int(path_nodes.size()) <= MAX_PATH_LENGTH )
kpeter@2625
   548
          {
kpeter@2625
   549
            if (next_dir[tip]) {
kpeter@2625
   550
              for (OutEdgeIt e = next_out[tip]; e != INVALID; ++e) {
kpeter@2625
   551
                if (_capacity[e] - (*_flow)[e] > 0 && (*_red_cost)[e] < 0) {
kpeter@2625
   552
                  u = _graph.target(e);
kpeter@2625
   553
                  pred_edge[u] = e;
kpeter@2625
   554
                  forward[u] = true;
kpeter@2625
   555
                  next_out[tip] = e;
kpeter@2625
   556
                  tip = u;
kpeter@2625
   557
                  path_nodes.push_back(tip);
kpeter@2625
   558
                  goto next_step;
kpeter@2625
   559
                }
kpeter@2625
   560
              }
kpeter@2625
   561
              next_dir[tip] = false;
kpeter@2625
   562
            }
kpeter@2625
   563
            for (InEdgeIt e = next_in[tip]; e != INVALID; ++e) {
kpeter@2625
   564
              if ((*_flow)[e] > 0 && -(*_red_cost)[e] < 0) {
kpeter@2625
   565
                u = _graph.source(e);
kpeter@2625
   566
                pred_edge[u] = e;
kpeter@2625
   567
                forward[u] = false;
kpeter@2625
   568
                next_in[tip] = e;
kpeter@2625
   569
                tip = u;
kpeter@2625
   570
                path_nodes.push_back(tip);
kpeter@2625
   571
                goto next_step;
kpeter@2625
   572
              }
kpeter@2625
   573
            }
kpeter@2625
   574
kpeter@2625
   575
            // Relabel tip node
kpeter@2625
   576
            min_red_cost = std::numeric_limits<LCost>::max() / 2;
kpeter@2625
   577
            for (OutEdgeIt oe(_graph, tip); oe != INVALID; ++oe) {
kpeter@2625
   578
              if ( _capacity[oe] - (*_flow)[oe] > 0 &&
kpeter@2625
   579
                   (*_red_cost)[oe] < min_red_cost )
kpeter@2625
   580
                min_red_cost = (*_red_cost)[oe];
kpeter@2625
   581
            }
kpeter@2625
   582
            for (InEdgeIt ie(_graph, tip); ie != INVALID; ++ie) {
kpeter@2625
   583
              if ((*_flow)[ie] > 0 && -(*_red_cost)[ie] < min_red_cost)
kpeter@2625
   584
                min_red_cost = -(*_red_cost)[ie];
kpeter@2625
   585
            }
kpeter@2625
   586
            (*_potential)[tip] -= min_red_cost + _epsilon;
kpeter@2625
   587
kpeter@2625
   588
            // Reset the next edge maps
kpeter@2625
   589
            next_out[tip] = OutEdgeIt(_graph, tip);
kpeter@2625
   590
            next_in[tip] = InEdgeIt(_graph, tip);
kpeter@2625
   591
            next_dir[tip] = true;
kpeter@2625
   592
kpeter@2625
   593
            // Step back
kpeter@2625
   594
            if (tip != start) {
kpeter@2625
   595
              path_nodes.pop_back();
kpeter@2625
   596
              tip = path_nodes[path_nodes.size()-1];
kpeter@2625
   597
            }
kpeter@2625
   598
kpeter@2625
   599
          next_step:
kpeter@2625
   600
            continue;
kpeter@2625
   601
          }
kpeter@2625
   602
kpeter@2625
   603
          // Augment along the found path (as much flow as possible)
kpeter@2625
   604
          Capacity delta;
kpeter@2625
   605
          for (int i = 1; i < int(path_nodes.size()); ++i) {
kpeter@2625
   606
            u = path_nodes[i];
kpeter@2625
   607
            delta = forward[u] ?
kpeter@2625
   608
              _capacity[pred_edge[u]] - (*_flow)[pred_edge[u]] :
kpeter@2625
   609
              (*_flow)[pred_edge[u]];
kpeter@2625
   610
            delta = std::min(delta, _excess[path_nodes[i-1]]);
kpeter@2625
   611
            (*_flow)[pred_edge[u]] += forward[u] ? delta : -delta;
kpeter@2625
   612
            _excess[path_nodes[i-1]] -= delta;
kpeter@2625
   613
            _excess[u] += delta;
kpeter@2625
   614
            if (_excess[u] > 0 && _excess[u] <= delta) active_nodes.push_back(u);
kpeter@2625
   615
          }
kpeter@2625
   616
        }
kpeter@2625
   617
      }
kpeter@2625
   618
kpeter@2625
   619
      // Compute node potentials for the original costs
kpeter@2625
   620
      ResidualCostMap<CostMap> res_cost(_orig_cost);
kpeter@2625
   621
      BellmanFord< ResGraph, ResidualCostMap<CostMap> >
kpeter@2625
   622
        bf(*_res_graph, res_cost);
kpeter@2625
   623
      bf.init(0); bf.start();
kpeter@2625
   624
      for (NodeIt n(_graph); n != INVALID; ++n)
kpeter@2625
   625
        (*_potential)[n] = bf.dist(n);
kpeter@2625
   626
kpeter@2625
   627
      // Handle non-zero lower bounds
kpeter@2625
   628
      if (_lower) {
kpeter@2625
   629
        for (EdgeIt e(_graph); e != INVALID; ++e)
kpeter@2625
   630
          (*_flow)[e] += (*_lower)[e];
kpeter@2625
   631
      }
kpeter@2625
   632
      return true;
kpeter@2625
   633
    }
kpeter@2625
   634
kpeter@2625
   635
    /// Execute the algorithm performing push and relabel operations.
kpeter@2625
   636
    bool startPushRelabel() {
kpeter@2625
   637
      // Paramters for heuristics
kpeter@2625
   638
      const int BF_HEURISTIC_EPSILON_BOUND = 1000;
kpeter@2625
   639
      const int BF_HEURISTIC_BOUND_FACTOR  = 3;
kpeter@2625
   640
kpeter@2625
   641
      typename Graph::template NodeMap<bool> hyper(_graph, false);
kpeter@2625
   642
      typename Graph::template NodeMap<Edge> pred_edge(_graph);
kpeter@2625
   643
      typename Graph::template NodeMap<bool> forward(_graph);
kpeter@2625
   644
      typename Graph::template NodeMap<OutEdgeIt> next_out(_graph);
kpeter@2625
   645
      typename Graph::template NodeMap<InEdgeIt> next_in(_graph);
kpeter@2625
   646
      typename Graph::template NodeMap<bool> next_dir(_graph);
kpeter@2625
   647
      std::deque<Node> active_nodes;
kpeter@2625
   648
kpeter@2625
   649
      int node_num = countNodes(_graph);
kpeter@2625
   650
      for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
kpeter@2625
   651
                                        1 : _epsilon / _alpha )
kpeter@2625
   652
      {
kpeter@2625
   653
        // "Early Termination" heuristic: use Bellman-Ford algorithm
kpeter@2625
   654
        // to check if the current flow is optimal
kpeter@2625
   655
        if (_epsilon <= BF_HEURISTIC_EPSILON_BOUND) {
kpeter@2625
   656
          typedef ShiftMap< ResidualCostMap<LargeCostMap> > ShiftCostMap;
kpeter@2625
   657
          ShiftCostMap shift_cost(_res_cost, 1);
kpeter@2625
   658
          BellmanFord<ResGraph, ShiftCostMap> bf(*_res_graph, shift_cost);
kpeter@2625
   659
          bf.init(0);
kpeter@2625
   660
          bool done = false;
kpeter@2625
   661
          int K = int(BF_HEURISTIC_BOUND_FACTOR * sqrt(node_num));
kpeter@2625
   662
          for (int i = 0; i < K && !done; ++i)
kpeter@2625
   663
            done = bf.processNextWeakRound();
kpeter@2625
   664
          if (done) break;
kpeter@2625
   665
        }
kpeter@2625
   666
kpeter@2625
   667
        // Saturate edges not satisfying the optimality condition
kpeter@2625
   668
        Capacity delta;
kpeter@2625
   669
        for (EdgeIt e(_graph); e != INVALID; ++e) {
kpeter@2625
   670
          if (_capacity[e] - (*_flow)[e] > 0 && (*_red_cost)[e] < 0) {
kpeter@2625
   671
            delta = _capacity[e] - (*_flow)[e];
kpeter@2625
   672
            _excess[_graph.source(e)] -= delta;
kpeter@2625
   673
            _excess[_graph.target(e)] += delta;
kpeter@2625
   674
            (*_flow)[e] = _capacity[e];
kpeter@2625
   675
          }
kpeter@2625
   676
          if ((*_flow)[e] > 0 && -(*_red_cost)[e] < 0) {
kpeter@2625
   677
            _excess[_graph.target(e)] -= (*_flow)[e];
kpeter@2625
   678
            _excess[_graph.source(e)] += (*_flow)[e];
kpeter@2625
   679
            (*_flow)[e] = 0;
kpeter@2625
   680
          }
kpeter@2625
   681
        }
kpeter@2625
   682
kpeter@2625
   683
        // Find active nodes (i.e. nodes with positive excess)
kpeter@2625
   684
        for (NodeIt n(_graph); n != INVALID; ++n) {
kpeter@2625
   685
          if (_excess[n] > 0) active_nodes.push_back(n);
kpeter@2625
   686
        }
kpeter@2625
   687
kpeter@2625
   688
        // Initialize the next edge maps
kpeter@2625
   689
        for (NodeIt n(_graph); n != INVALID; ++n) {
kpeter@2625
   690
          next_out[n] = OutEdgeIt(_graph, n);
kpeter@2625
   691
          next_in[n] = InEdgeIt(_graph, n);
kpeter@2625
   692
          next_dir[n] = true;
kpeter@2625
   693
        }
kpeter@2625
   694
kpeter@2625
   695
        // Perform push and relabel operations
kpeter@2625
   696
        while (active_nodes.size() > 0) {
kpeter@2625
   697
          // Select an active node (FIFO selection)
kpeter@2577
   698
          Node n = active_nodes[0], t;
kpeter@2577
   699
          bool relabel_enabled = true;
kpeter@2577
   700
kpeter@2625
   701
          // Perform push operations if there are admissible edges
kpeter@2625
   702
          if (_excess[n] > 0 && next_dir[n]) {
kpeter@2625
   703
            OutEdgeIt e = next_out[n];
kpeter@2625
   704
            for ( ; e != INVALID; ++e) {
kpeter@2581
   705
              if (_capacity[e] - (*_flow)[e] > 0 && (*_red_cost)[e] < 0) {
kpeter@2625
   706
                delta = std::min(_capacity[e] - (*_flow)[e], _excess[n]);
kpeter@2577
   707
                t = _graph.target(e);
kpeter@2577
   708
kpeter@2577
   709
                // Push-look-ahead heuristic
kpeter@2577
   710
                Capacity ahead = -_excess[t];
kpeter@2577
   711
                for (OutEdgeIt oe(_graph, t); oe != INVALID; ++oe) {
kpeter@2581
   712
                  if (_capacity[oe] - (*_flow)[oe] > 0 && (*_red_cost)[oe] < 0)
kpeter@2581
   713
                    ahead += _capacity[oe] - (*_flow)[oe];
kpeter@2577
   714
                }
kpeter@2577
   715
                for (InEdgeIt ie(_graph, t); ie != INVALID; ++ie) {
kpeter@2581
   716
                  if ((*_flow)[ie] > 0 && -(*_red_cost)[ie] < 0)
kpeter@2581
   717
                    ahead += (*_flow)[ie];
kpeter@2577
   718
                }
kpeter@2577
   719
                if (ahead < 0) ahead = 0;
kpeter@2577
   720
kpeter@2625
   721
                // Push flow along the edge
kpeter@2577
   722
                if (ahead < delta) {
kpeter@2581
   723
                  (*_flow)[e] += ahead;
kpeter@2577
   724
                  _excess[n] -= ahead;
kpeter@2577
   725
                  _excess[t] += ahead;
kpeter@2577
   726
                  active_nodes.push_front(t);
kpeter@2577
   727
                  hyper[t] = true;
kpeter@2577
   728
                  relabel_enabled = false;
kpeter@2577
   729
                  break;
kpeter@2577
   730
                } else {
kpeter@2581
   731
                  (*_flow)[e] += delta;
kpeter@2577
   732
                  _excess[n] -= delta;
kpeter@2577
   733
                  _excess[t] += delta;
kpeter@2577
   734
                  if (_excess[t] > 0 && _excess[t] <= delta)
kpeter@2577
   735
                    active_nodes.push_back(t);
kpeter@2577
   736
                }
kpeter@2577
   737
kpeter@2577
   738
                if (_excess[n] == 0) break;
kpeter@2577
   739
              }
kpeter@2577
   740
            }
kpeter@2625
   741
            if (e != INVALID) {
kpeter@2625
   742
              next_out[n] = e;
kpeter@2625
   743
            } else {
kpeter@2625
   744
              next_dir[n] = false;
kpeter@2625
   745
            }
kpeter@2577
   746
          }
kpeter@2577
   747
kpeter@2625
   748
          if (_excess[n] > 0 && !next_dir[n]) {
kpeter@2625
   749
            InEdgeIt e = next_in[n];
kpeter@2625
   750
            for ( ; e != INVALID; ++e) {
kpeter@2581
   751
              if ((*_flow)[e] > 0 && -(*_red_cost)[e] < 0) {
kpeter@2625
   752
                delta = std::min((*_flow)[e], _excess[n]);
kpeter@2577
   753
                t = _graph.source(e);
kpeter@2577
   754
kpeter@2577
   755
                // Push-look-ahead heuristic
kpeter@2577
   756
                Capacity ahead = -_excess[t];
kpeter@2577
   757
                for (OutEdgeIt oe(_graph, t); oe != INVALID; ++oe) {
kpeter@2581
   758
                  if (_capacity[oe] - (*_flow)[oe] > 0 && (*_red_cost)[oe] < 0)
kpeter@2581
   759
                    ahead += _capacity[oe] - (*_flow)[oe];
kpeter@2577
   760
                }
kpeter@2577
   761
                for (InEdgeIt ie(_graph, t); ie != INVALID; ++ie) {
kpeter@2581
   762
                  if ((*_flow)[ie] > 0 && -(*_red_cost)[ie] < 0)
kpeter@2581
   763
                    ahead += (*_flow)[ie];
kpeter@2577
   764
                }
kpeter@2577
   765
                if (ahead < 0) ahead = 0;
kpeter@2577
   766
kpeter@2625
   767
                // Push flow along the edge
kpeter@2577
   768
                if (ahead < delta) {
kpeter@2581
   769
                  (*_flow)[e] -= ahead;
kpeter@2577
   770
                  _excess[n] -= ahead;
kpeter@2577
   771
                  _excess[t] += ahead;
kpeter@2577
   772
                  active_nodes.push_front(t);
kpeter@2577
   773
                  hyper[t] = true;
kpeter@2577
   774
                  relabel_enabled = false;
kpeter@2577
   775
                  break;
kpeter@2577
   776
                } else {
kpeter@2581
   777
                  (*_flow)[e] -= delta;
kpeter@2577
   778
                  _excess[n] -= delta;
kpeter@2577
   779
                  _excess[t] += delta;
kpeter@2577
   780
                  if (_excess[t] > 0 && _excess[t] <= delta)
kpeter@2577
   781
                    active_nodes.push_back(t);
kpeter@2577
   782
                }
kpeter@2577
   783
kpeter@2577
   784
                if (_excess[n] == 0) break;
kpeter@2577
   785
              }
kpeter@2577
   786
            }
kpeter@2625
   787
            next_in[n] = e;
kpeter@2577
   788
          }
kpeter@2577
   789
kpeter@2625
   790
          // Relabel the node if it is still active (or hyper)
kpeter@2577
   791
          if (relabel_enabled && (_excess[n] > 0 || hyper[n])) {
kpeter@2625
   792
            LCost min_red_cost = std::numeric_limits<LCost>::max() / 2;
kpeter@2577
   793
            for (OutEdgeIt oe(_graph, n); oe != INVALID; ++oe) {
kpeter@2581
   794
              if ( _capacity[oe] - (*_flow)[oe] > 0 &&
kpeter@2581
   795
                   (*_red_cost)[oe] < min_red_cost )
kpeter@2581
   796
                min_red_cost = (*_red_cost)[oe];
kpeter@2577
   797
            }
kpeter@2577
   798
            for (InEdgeIt ie(_graph, n); ie != INVALID; ++ie) {
kpeter@2581
   799
              if ((*_flow)[ie] > 0 && -(*_red_cost)[ie] < min_red_cost)
kpeter@2581
   800
                min_red_cost = -(*_red_cost)[ie];
kpeter@2577
   801
            }
kpeter@2581
   802
            (*_potential)[n] -= min_red_cost + _epsilon;
kpeter@2577
   803
            hyper[n] = false;
kpeter@2625
   804
kpeter@2625
   805
            // Reset the next edge maps
kpeter@2625
   806
            next_out[n] = OutEdgeIt(_graph, n);
kpeter@2625
   807
            next_in[n] = InEdgeIt(_graph, n);
kpeter@2625
   808
            next_dir[n] = true;
kpeter@2577
   809
          }
kpeter@2577
   810
kpeter@2625
   811
          // Remove nodes that are not active nor hyper
kpeter@2577
   812
          while ( active_nodes.size() > 0 &&
kpeter@2577
   813
                  _excess[active_nodes[0]] <= 0 &&
kpeter@2577
   814
                  !hyper[active_nodes[0]] ) {
kpeter@2577
   815
            active_nodes.pop_front();
kpeter@2577
   816
          }
kpeter@2577
   817
        }
kpeter@2577
   818
      }
kpeter@2577
   819
kpeter@2625
   820
      // Compute node potentials for the original costs
kpeter@2581
   821
      ResidualCostMap<CostMap> res_cost(_orig_cost);
kpeter@2581
   822
      BellmanFord< ResGraph, ResidualCostMap<CostMap> >
kpeter@2581
   823
        bf(*_res_graph, res_cost);
kpeter@2581
   824
      bf.init(0); bf.start();
kpeter@2581
   825
      for (NodeIt n(_graph); n != INVALID; ++n)
kpeter@2581
   826
        (*_potential)[n] = bf.dist(n);
kpeter@2581
   827
kpeter@2625
   828
      // Handle non-zero lower bounds
kpeter@2577
   829
      if (_lower) {
kpeter@2577
   830
        for (EdgeIt e(_graph); e != INVALID; ++e)
kpeter@2581
   831
          (*_flow)[e] += (*_lower)[e];
kpeter@2577
   832
      }
kpeter@2577
   833
      return true;
kpeter@2577
   834
    }
kpeter@2577
   835
kpeter@2577
   836
  }; //class CostScaling
kpeter@2577
   837
kpeter@2577
   838
  ///@}
kpeter@2577
   839
kpeter@2577
   840
} //namespace lemon
kpeter@2577
   841
kpeter@2577
   842
#endif //LEMON_COST_SCALING_H