| 
alpar@906
 | 
     1  | 
/* -*- C++ -*-
  | 
| 
alpar@921
 | 
     2  | 
 * src/lemon/dijkstra.h - Part of LEMON, a generic C++ optimization library
  | 
| 
alpar@906
 | 
     3  | 
 *
  | 
| 
alpar@906
 | 
     4  | 
 * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
  | 
| 
alpar@906
 | 
     5  | 
 * (Egervary Combinatorial Optimization Research Group, EGRES).
  | 
| 
alpar@906
 | 
     6  | 
 *
  | 
| 
alpar@906
 | 
     7  | 
 * Permission to use, modify and distribute this software is granted
  | 
| 
alpar@906
 | 
     8  | 
 * provided that this copyright notice appears in all copies. For
  | 
| 
alpar@906
 | 
     9  | 
 * precise terms see the accompanying LICENSE file.
  | 
| 
alpar@906
 | 
    10  | 
 *
  | 
| 
alpar@906
 | 
    11  | 
 * This software is provided "AS IS" with no warranty of any kind,
  | 
| 
alpar@906
 | 
    12  | 
 * express or implied, and with no claim as to its suitability for any
  | 
| 
alpar@906
 | 
    13  | 
 * purpose.
  | 
| 
alpar@906
 | 
    14  | 
 *
  | 
| 
alpar@906
 | 
    15  | 
 */
  | 
| 
alpar@906
 | 
    16  | 
  | 
| 
alpar@921
 | 
    17  | 
#ifndef LEMON_DIJKSTRA_H
  | 
| 
alpar@921
 | 
    18  | 
#define LEMON_DIJKSTRA_H
  | 
| 
alpar@255
 | 
    19  | 
  | 
| 
alpar@758
 | 
    20  | 
///\ingroup flowalgs
  | 
| 
alpar@255
 | 
    21  | 
///\file
  | 
| 
alpar@255
 | 
    22  | 
///\brief Dijkstra algorithm.
  | 
| 
alpar@255
 | 
    23  | 
  | 
| 
alpar@921
 | 
    24  | 
#include <lemon/bin_heap.h>
  | 
| 
alpar@921
 | 
    25  | 
#include <lemon/invalid.h>
  | 
| 
alpar@255
 | 
    26  | 
  | 
| 
alpar@921
 | 
    27  | 
namespace lemon {
 | 
| 
jacint@385
 | 
    28  | 
  | 
| 
alpar@758
 | 
    29  | 
/// \addtogroup flowalgs
  | 
| 
alpar@430
 | 
    30  | 
/// @{
 | 
| 
alpar@430
 | 
    31  | 
  | 
| 
alpar@255
 | 
    32  | 
  ///%Dijkstra algorithm class.
  | 
| 
alpar@255
 | 
    33  | 
  | 
| 
alpar@255
 | 
    34  | 
  ///This class provides an efficient implementation of %Dijkstra algorithm.
  | 
| 
alpar@255
 | 
    35  | 
  ///The edge lengths are passed to the algorithm using a
  | 
| 
klao@959
 | 
    36  | 
  ///\ref concept::ReadMap "ReadMap",
  | 
| 
alpar@255
 | 
    37  | 
  ///so it is easy to change it to any kind of length.
  | 
| 
alpar@255
 | 
    38  | 
  ///
  | 
| 
alpar@880
 | 
    39  | 
  ///The type of the length is determined by the
  | 
| 
alpar@987
 | 
    40  | 
  ///\ref concept::ReadMap::Value "Value" of the length map.
  | 
| 
alpar@255
 | 
    41  | 
  ///
  | 
| 
alpar@255
 | 
    42  | 
  ///It is also possible to change the underlying priority heap.
  | 
| 
alpar@255
 | 
    43  | 
  ///
  | 
| 
alpar@584
 | 
    44  | 
  ///\param GR The graph type the algorithm runs on.
  | 
| 
alpar@584
 | 
    45  | 
  ///\param LM This read-only
  | 
| 
jacint@385
 | 
    46  | 
  ///EdgeMap
  | 
| 
jacint@385
 | 
    47  | 
  ///determines the
  | 
| 
jacint@385
 | 
    48  | 
  ///lengths of the edges. It is read once for each edge, so the map
  | 
| 
jacint@385
 | 
    49  | 
  ///may involve in relatively time consuming process to compute the edge
  | 
| 
jacint@385
 | 
    50  | 
  ///length if it is necessary. The default map type is
  | 
| 
klao@959
 | 
    51  | 
  ///\ref concept::StaticGraph::EdgeMap "Graph::EdgeMap<int>"
  | 
| 
jacint@385
 | 
    52  | 
  ///\param Heap The heap type used by the %Dijkstra
  | 
| 
jacint@385
 | 
    53  | 
  ///algorithm. The default
  | 
| 
jacint@385
 | 
    54  | 
  ///is using \ref BinHeap "binary heap".
  | 
| 
alpar@456
 | 
    55  | 
  ///
  | 
| 
alpar@689
 | 
    56  | 
  ///\author Jacint Szabo and Alpar Juttner
  | 
| 
alpar@693
 | 
    57  | 
  ///\todo We need a typedef-names should be standardized. (-:
  | 
| 
alpar@734
 | 
    58  | 
  ///\todo Type of \c PredMap, \c PredNodeMap and \c DistMap
  | 
| 
alpar@734
 | 
    59  | 
  ///should not be fixed. (Problematic to solve).
  | 
| 
alpar@584
 | 
    60  | 
  | 
| 
alpar@255
 | 
    61  | 
#ifdef DOXYGEN
  | 
| 
alpar@584
 | 
    62  | 
  template <typename GR,
  | 
| 
alpar@584
 | 
    63  | 
	    typename LM,
  | 
| 
alpar@255
 | 
    64  | 
	    typename Heap>
  | 
| 
alpar@255
 | 
    65  | 
#else
  | 
| 
alpar@584
 | 
    66  | 
  template <typename GR,
  | 
| 
alpar@584
 | 
    67  | 
	    typename LM=typename GR::template EdgeMap<int>,
  | 
| 
alpar@532
 | 
    68  | 
	    template <class,class,class,class> class Heap = BinHeap >
  | 
| 
alpar@255
 | 
    69  | 
#endif
  | 
| 
alpar@255
 | 
    70  | 
  class Dijkstra{
 | 
| 
alpar@255
 | 
    71  | 
  public:
  | 
| 
alpar@584
 | 
    72  | 
    ///The type of the underlying graph.
  | 
| 
alpar@584
 | 
    73  | 
    typedef GR Graph;
  | 
| 
alpar@911
 | 
    74  | 
    ///\e
  | 
| 
alpar@255
 | 
    75  | 
    typedef typename Graph::Node Node;
  | 
| 
alpar@911
 | 
    76  | 
    ///\e
  | 
| 
alpar@255
 | 
    77  | 
    typedef typename Graph::NodeIt NodeIt;
  | 
| 
alpar@911
 | 
    78  | 
    ///\e
  | 
| 
alpar@255
 | 
    79  | 
    typedef typename Graph::Edge Edge;
  | 
| 
alpar@911
 | 
    80  | 
    ///\e
  | 
| 
alpar@255
 | 
    81  | 
    typedef typename Graph::OutEdgeIt OutEdgeIt;
  | 
| 
alpar@255
 | 
    82  | 
    
  | 
| 
alpar@584
 | 
    83  | 
    ///The type of the length of the edges.
  | 
| 
alpar@987
 | 
    84  | 
    typedef typename LM::Value Value;
  | 
| 
alpar@693
 | 
    85  | 
    ///The type of the map that stores the edge lengths.
  | 
| 
alpar@584
 | 
    86  | 
    typedef LM LengthMap;
  | 
| 
alpar@693
 | 
    87  | 
    ///\brief The type of the map that stores the last
  | 
| 
alpar@584
 | 
    88  | 
    ///edges of the shortest paths.
  | 
| 
marci@433
 | 
    89  | 
    typedef typename Graph::template NodeMap<Edge> PredMap;
  | 
| 
alpar@693
 | 
    90  | 
    ///\brief The type of the map that stores the last but one
  | 
| 
alpar@584
 | 
    91  | 
    ///nodes of the shortest paths.
  | 
| 
marci@433
 | 
    92  | 
    typedef typename Graph::template NodeMap<Node> PredNodeMap;
  | 
| 
alpar@693
 | 
    93  | 
    ///The type of the map that stores the dists of the nodes.
  | 
| 
alpar@987
 | 
    94  | 
    typedef typename Graph::template NodeMap<Value> DistMap;
  | 
| 
alpar@255
 | 
    95  | 
  | 
| 
alpar@255
 | 
    96  | 
  private:
  | 
| 
alpar@802
 | 
    97  | 
    /// Pointer to the underlying graph.
  | 
| 
alpar@688
 | 
    98  | 
    const Graph *G;
  | 
| 
alpar@802
 | 
    99  | 
    /// Pointer to the length map
  | 
| 
alpar@688
 | 
   100  | 
    const LM *length;
  | 
| 
alpar@802
 | 
   101  | 
    ///Pointer to the map of predecessors edges.
  | 
| 
alpar@688
 | 
   102  | 
    PredMap *predecessor;
  | 
| 
alpar@802
 | 
   103  | 
    ///Indicates if \ref predecessor is locally allocated (\c true) or not.
  | 
| 
alpar@688
 | 
   104  | 
    bool local_predecessor;
  | 
| 
alpar@802
 | 
   105  | 
    ///Pointer to the map of predecessors nodes.
  | 
| 
alpar@688
 | 
   106  | 
    PredNodeMap *pred_node;
  | 
| 
alpar@802
 | 
   107  | 
    ///Indicates if \ref pred_node is locally allocated (\c true) or not.
  | 
| 
alpar@688
 | 
   108  | 
    bool local_pred_node;
  | 
| 
alpar@802
 | 
   109  | 
    ///Pointer to the map of distances.
  | 
| 
alpar@688
 | 
   110  | 
    DistMap *distance;
  | 
| 
alpar@802
 | 
   111  | 
    ///Indicates if \ref distance is locally allocated (\c true) or not.
  | 
| 
alpar@688
 | 
   112  | 
    bool local_distance;
  | 
| 
alpar@688
 | 
   113  | 
  | 
| 
alpar@802
 | 
   114  | 
    ///The source node of the last execution.
  | 
| 
alpar@774
 | 
   115  | 
    Node source;
  | 
| 
alpar@774
 | 
   116  | 
  | 
| 
alpar@785
 | 
   117  | 
    ///Initializes the maps.
  | 
| 
alpar@688
 | 
   118  | 
    
  | 
| 
alpar@694
 | 
   119  | 
    ///\todo Error if \c G or are \c NULL. What about \c length?
  | 
| 
alpar@688
 | 
   120  | 
    ///\todo Better memory allocation (instead of new).
  | 
| 
alpar@688
 | 
   121  | 
    void init_maps() 
  | 
| 
alpar@688
 | 
   122  | 
    {
 | 
| 
alpar@688
 | 
   123  | 
      if(!predecessor) {
 | 
| 
alpar@688
 | 
   124  | 
	local_predecessor = true;
  | 
| 
alpar@688
 | 
   125  | 
	predecessor = new PredMap(*G);
  | 
| 
alpar@688
 | 
   126  | 
      }
  | 
| 
alpar@688
 | 
   127  | 
      if(!pred_node) {
 | 
| 
alpar@688
 | 
   128  | 
	local_pred_node = true;
  | 
| 
alpar@688
 | 
   129  | 
	pred_node = new PredNodeMap(*G);
  | 
| 
alpar@688
 | 
   130  | 
      }
  | 
| 
alpar@688
 | 
   131  | 
      if(!distance) {
 | 
| 
alpar@688
 | 
   132  | 
	local_distance = true;
  | 
| 
alpar@688
 | 
   133  | 
	distance = new DistMap(*G);
  | 
| 
alpar@688
 | 
   134  | 
      }
  | 
| 
alpar@688
 | 
   135  | 
    }
  | 
| 
alpar@255
 | 
   136  | 
    
  | 
| 
alpar@255
 | 
   137  | 
  public :
  | 
| 
alpar@802
 | 
   138  | 
    ///Constructor.
  | 
| 
alpar@255
 | 
   139  | 
    
  | 
| 
alpar@802
 | 
   140  | 
    ///\param _G the graph the algorithm will run on.
  | 
| 
alpar@802
 | 
   141  | 
    ///\param _length the length map used by the algorithm.
  | 
| 
alpar@584
 | 
   142  | 
    Dijkstra(const Graph& _G, const LM& _length) :
  | 
| 
alpar@688
 | 
   143  | 
      G(&_G), length(&_length),
  | 
| 
alpar@707
 | 
   144  | 
      predecessor(NULL), local_predecessor(false),
  | 
| 
alpar@707
 | 
   145  | 
      pred_node(NULL), local_pred_node(false),
  | 
| 
alpar@707
 | 
   146  | 
      distance(NULL), local_distance(false)
  | 
| 
alpar@688
 | 
   147  | 
    { }
 | 
| 
alpar@688
 | 
   148  | 
    
  | 
| 
alpar@802
 | 
   149  | 
    ///Destructor.
  | 
| 
alpar@688
 | 
   150  | 
    ~Dijkstra() 
  | 
| 
alpar@688
 | 
   151  | 
    {
 | 
| 
alpar@688
 | 
   152  | 
      if(local_predecessor) delete predecessor;
  | 
| 
alpar@688
 | 
   153  | 
      if(local_pred_node) delete pred_node;
  | 
| 
alpar@688
 | 
   154  | 
      if(local_distance) delete distance;
  | 
| 
alpar@688
 | 
   155  | 
    }
  | 
| 
alpar@688
 | 
   156  | 
  | 
| 
alpar@688
 | 
   157  | 
    ///Sets the length map.
  | 
| 
alpar@688
 | 
   158  | 
  | 
| 
alpar@688
 | 
   159  | 
    ///Sets the length map.
  | 
| 
alpar@688
 | 
   160  | 
    ///\return <tt> (*this) </tt>
  | 
| 
alpar@688
 | 
   161  | 
    Dijkstra &setLengthMap(const LM &m) 
  | 
| 
alpar@688
 | 
   162  | 
    {
 | 
| 
alpar@688
 | 
   163  | 
      length = &m;
  | 
| 
alpar@688
 | 
   164  | 
      return *this;
  | 
| 
alpar@688
 | 
   165  | 
    }
  | 
| 
alpar@688
 | 
   166  | 
  | 
| 
alpar@688
 | 
   167  | 
    ///Sets the map storing the predecessor edges.
  | 
| 
alpar@688
 | 
   168  | 
  | 
| 
alpar@688
 | 
   169  | 
    ///Sets the map storing the predecessor edges.
  | 
| 
alpar@688
 | 
   170  | 
    ///If you don't use this function before calling \ref run(),
  | 
| 
alpar@688
 | 
   171  | 
    ///it will allocate one. The destuctor deallocates this
  | 
| 
alpar@688
 | 
   172  | 
    ///automatically allocated map, of course.
  | 
| 
alpar@688
 | 
   173  | 
    ///\return <tt> (*this) </tt>
  | 
| 
alpar@688
 | 
   174  | 
    Dijkstra &setPredMap(PredMap &m) 
  | 
| 
alpar@688
 | 
   175  | 
    {
 | 
| 
alpar@688
 | 
   176  | 
      if(local_predecessor) {
 | 
| 
alpar@688
 | 
   177  | 
	delete predecessor;
  | 
| 
alpar@688
 | 
   178  | 
	local_predecessor=false;
  | 
| 
alpar@688
 | 
   179  | 
      }
  | 
| 
alpar@688
 | 
   180  | 
      predecessor = &m;
  | 
| 
alpar@688
 | 
   181  | 
      return *this;
  | 
| 
alpar@688
 | 
   182  | 
    }
  | 
| 
alpar@688
 | 
   183  | 
  | 
| 
alpar@688
 | 
   184  | 
    ///Sets the map storing the predecessor nodes.
  | 
| 
alpar@688
 | 
   185  | 
  | 
| 
alpar@688
 | 
   186  | 
    ///Sets the map storing the predecessor nodes.
  | 
| 
alpar@688
 | 
   187  | 
    ///If you don't use this function before calling \ref run(),
  | 
| 
alpar@688
 | 
   188  | 
    ///it will allocate one. The destuctor deallocates this
  | 
| 
alpar@688
 | 
   189  | 
    ///automatically allocated map, of course.
  | 
| 
alpar@688
 | 
   190  | 
    ///\return <tt> (*this) </tt>
  | 
| 
alpar@688
 | 
   191  | 
    Dijkstra &setPredNodeMap(PredNodeMap &m) 
  | 
| 
alpar@688
 | 
   192  | 
    {
 | 
| 
alpar@688
 | 
   193  | 
      if(local_pred_node) {
 | 
| 
alpar@688
 | 
   194  | 
	delete pred_node;
  | 
| 
alpar@688
 | 
   195  | 
	local_pred_node=false;
  | 
| 
alpar@688
 | 
   196  | 
      }
  | 
| 
alpar@688
 | 
   197  | 
      pred_node = &m;
  | 
| 
alpar@688
 | 
   198  | 
      return *this;
  | 
| 
alpar@688
 | 
   199  | 
    }
  | 
| 
alpar@688
 | 
   200  | 
  | 
| 
alpar@688
 | 
   201  | 
    ///Sets the map storing the distances calculated by the algorithm.
  | 
| 
alpar@688
 | 
   202  | 
  | 
| 
alpar@688
 | 
   203  | 
    ///Sets the map storing the distances calculated by the algorithm.
  | 
| 
alpar@688
 | 
   204  | 
    ///If you don't use this function before calling \ref run(),
  | 
| 
alpar@688
 | 
   205  | 
    ///it will allocate one. The destuctor deallocates this
  | 
| 
alpar@688
 | 
   206  | 
    ///automatically allocated map, of course.
  | 
| 
alpar@688
 | 
   207  | 
    ///\return <tt> (*this) </tt>
  | 
| 
alpar@688
 | 
   208  | 
    Dijkstra &setDistMap(DistMap &m) 
  | 
| 
alpar@688
 | 
   209  | 
    {
 | 
| 
alpar@688
 | 
   210  | 
      if(local_distance) {
 | 
| 
alpar@688
 | 
   211  | 
	delete distance;
  | 
| 
alpar@688
 | 
   212  | 
	local_distance=false;
  | 
| 
alpar@688
 | 
   213  | 
      }
  | 
| 
alpar@688
 | 
   214  | 
      distance = &m;
  | 
| 
alpar@688
 | 
   215  | 
      return *this;
  | 
| 
alpar@688
 | 
   216  | 
    }
  | 
| 
alpar@255
 | 
   217  | 
    
  | 
| 
alpar@694
 | 
   218  | 
  ///Runs %Dijkstra algorithm from node \c s.
  | 
| 
alpar@694
 | 
   219  | 
  | 
| 
alpar@694
 | 
   220  | 
  ///This method runs the %Dijkstra algorithm from a root node \c s
  | 
| 
alpar@694
 | 
   221  | 
  ///in order to
  | 
| 
alpar@694
 | 
   222  | 
  ///compute the
  | 
| 
alpar@694
 | 
   223  | 
  ///shortest path to each node. The algorithm computes
  | 
| 
alpar@694
 | 
   224  | 
  ///- The shortest path tree.
  | 
| 
alpar@694
 | 
   225  | 
  ///- The distance of each node from the root.
  | 
| 
alpar@694
 | 
   226  | 
    
  | 
| 
alpar@694
 | 
   227  | 
    void run(Node s) {
 | 
| 
alpar@694
 | 
   228  | 
      
  | 
| 
alpar@694
 | 
   229  | 
      init_maps();
  | 
| 
alpar@694
 | 
   230  | 
      
  | 
| 
alpar@774
 | 
   231  | 
      source = s;
  | 
| 
alpar@774
 | 
   232  | 
      
  | 
| 
alpar@774
 | 
   233  | 
      for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
 | 
| 
alpar@694
 | 
   234  | 
	predecessor->set(u,INVALID);
  | 
| 
alpar@694
 | 
   235  | 
	pred_node->set(u,INVALID);
  | 
| 
alpar@694
 | 
   236  | 
      }
  | 
| 
alpar@694
 | 
   237  | 
      
  | 
| 
alpar@694
 | 
   238  | 
      typename GR::template NodeMap<int> heap_map(*G,-1);
  | 
| 
alpar@694
 | 
   239  | 
      
  | 
| 
alpar@987
 | 
   240  | 
      typedef Heap<Node, Value, typename GR::template NodeMap<int>,
  | 
| 
alpar@987
 | 
   241  | 
      std::less<Value> > 
  | 
| 
alpar@694
 | 
   242  | 
      HeapType;
  | 
| 
alpar@694
 | 
   243  | 
      
  | 
| 
alpar@694
 | 
   244  | 
      HeapType heap(heap_map);
  | 
| 
alpar@694
 | 
   245  | 
      
  | 
| 
alpar@694
 | 
   246  | 
      heap.push(s,0); 
  | 
| 
alpar@694
 | 
   247  | 
      
  | 
| 
alpar@694
 | 
   248  | 
      while ( !heap.empty() ) {
 | 
| 
alpar@694
 | 
   249  | 
	
  | 
| 
alpar@694
 | 
   250  | 
	Node v=heap.top(); 
  | 
| 
alpar@987
 | 
   251  | 
	Value oldvalue=heap[v];
  | 
| 
alpar@694
 | 
   252  | 
	heap.pop();
  | 
| 
alpar@694
 | 
   253  | 
	distance->set(v, oldvalue);
  | 
| 
alpar@694
 | 
   254  | 
	
  | 
| 
alpar@694
 | 
   255  | 
	
  | 
| 
alpar@774
 | 
   256  | 
	for(OutEdgeIt e(*G,v); e!=INVALID; ++e) {
 | 
| 
alpar@986
 | 
   257  | 
	  Node w=G->target(e); 
  | 
| 
alpar@694
 | 
   258  | 
	  switch(heap.state(w)) {
 | 
| 
alpar@694
 | 
   259  | 
	  case HeapType::PRE_HEAP:
  | 
| 
alpar@694
 | 
   260  | 
	    heap.push(w,oldvalue+(*length)[e]); 
  | 
| 
alpar@694
 | 
   261  | 
	    predecessor->set(w,e);
  | 
| 
alpar@694
 | 
   262  | 
	    pred_node->set(w,v);
  | 
| 
alpar@694
 | 
   263  | 
	    break;
  | 
| 
alpar@694
 | 
   264  | 
	  case HeapType::IN_HEAP:
  | 
| 
alpar@694
 | 
   265  | 
	    if ( oldvalue+(*length)[e] < heap[w] ) {
 | 
| 
alpar@694
 | 
   266  | 
	      heap.decrease(w, oldvalue+(*length)[e]); 
  | 
| 
alpar@694
 | 
   267  | 
	      predecessor->set(w,e);
  | 
| 
alpar@694
 | 
   268  | 
	      pred_node->set(w,v);
  | 
| 
alpar@694
 | 
   269  | 
	    }
  | 
| 
alpar@694
 | 
   270  | 
	    break;
  | 
| 
alpar@694
 | 
   271  | 
	  case HeapType::POST_HEAP:
  | 
| 
alpar@694
 | 
   272  | 
	    break;
  | 
| 
alpar@694
 | 
   273  | 
	  }
  | 
| 
alpar@694
 | 
   274  | 
	}
  | 
| 
alpar@694
 | 
   275  | 
      }
  | 
| 
alpar@694
 | 
   276  | 
    }
  | 
| 
alpar@255
 | 
   277  | 
    
  | 
| 
jacint@385
 | 
   278  | 
    ///The distance of a node from the root.
  | 
| 
alpar@255
 | 
   279  | 
  | 
| 
jacint@385
 | 
   280  | 
    ///Returns the distance of a node from the root.
  | 
| 
alpar@255
 | 
   281  | 
    ///\pre \ref run() must be called before using this function.
  | 
| 
jacint@385
 | 
   282  | 
    ///\warning If node \c v in unreachable from the root the return value
  | 
| 
alpar@255
 | 
   283  | 
    ///of this funcion is undefined.
  | 
| 
alpar@987
 | 
   284  | 
    Value dist(Node v) const { return (*distance)[v]; }
 | 
| 
jacint@373
 | 
   285  | 
  | 
| 
alpar@584
 | 
   286  | 
    ///Returns the 'previous edge' of the shortest path tree.
  | 
| 
alpar@255
 | 
   287  | 
  | 
| 
alpar@584
 | 
   288  | 
    ///For a node \c v it returns the 'previous edge' of the shortest path tree,
  | 
| 
alpar@785
 | 
   289  | 
    ///i.e. it returns the last edge of a shortest path from the root to \c
  | 
| 
alpar@688
 | 
   290  | 
    ///v. It is \ref INVALID
  | 
| 
alpar@688
 | 
   291  | 
    ///if \c v is unreachable from the root or if \c v=s. The
  | 
| 
jacint@385
 | 
   292  | 
    ///shortest path tree used here is equal to the shortest path tree used in
  | 
| 
jacint@385
 | 
   293  | 
    ///\ref predNode(Node v).  \pre \ref run() must be called before using
  | 
| 
jacint@385
 | 
   294  | 
    ///this function.
  | 
| 
alpar@780
 | 
   295  | 
    ///\todo predEdge could be a better name.
  | 
| 
alpar@688
 | 
   296  | 
    Edge pred(Node v) const { return (*predecessor)[v]; }
 | 
| 
jacint@373
 | 
   297  | 
  | 
| 
alpar@584
 | 
   298  | 
    ///Returns the 'previous node' of the shortest path tree.
  | 
| 
alpar@255
 | 
   299  | 
  | 
| 
alpar@584
 | 
   300  | 
    ///For a node \c v it returns the 'previous node' of the shortest path tree,
  | 
| 
jacint@385
 | 
   301  | 
    ///i.e. it returns the last but one node from a shortest path from the
  | 
| 
jacint@385
 | 
   302  | 
    ///root to \c /v. It is INVALID if \c v is unreachable from the root or if
  | 
| 
jacint@385
 | 
   303  | 
    ///\c v=s. The shortest path tree used here is equal to the shortest path
  | 
| 
jacint@385
 | 
   304  | 
    ///tree used in \ref pred(Node v).  \pre \ref run() must be called before
  | 
| 
jacint@385
 | 
   305  | 
    ///using this function.
  | 
| 
alpar@688
 | 
   306  | 
    Node predNode(Node v) const { return (*pred_node)[v]; }
 | 
| 
alpar@255
 | 
   307  | 
    
  | 
| 
alpar@255
 | 
   308  | 
    ///Returns a reference to the NodeMap of distances.
  | 
| 
alpar@255
 | 
   309  | 
  | 
| 
jacint@385
 | 
   310  | 
    ///Returns a reference to the NodeMap of distances. \pre \ref run() must
  | 
| 
jacint@385
 | 
   311  | 
    ///be called before using this function.
  | 
| 
alpar@688
 | 
   312  | 
    const DistMap &distMap() const { return *distance;}
 | 
| 
jacint@385
 | 
   313  | 
 
  | 
| 
alpar@255
 | 
   314  | 
    ///Returns a reference to the shortest path tree map.
  | 
| 
alpar@255
 | 
   315  | 
  | 
| 
alpar@255
 | 
   316  | 
    ///Returns a reference to the NodeMap of the edges of the
  | 
| 
alpar@255
 | 
   317  | 
    ///shortest path tree.
  | 
| 
alpar@255
 | 
   318  | 
    ///\pre \ref run() must be called before using this function.
  | 
| 
alpar@688
 | 
   319  | 
    const PredMap &predMap() const { return *predecessor;}
 | 
| 
jacint@385
 | 
   320  | 
 
  | 
| 
jacint@385
 | 
   321  | 
    ///Returns a reference to the map of nodes of shortest paths.
  | 
| 
alpar@255
 | 
   322  | 
  | 
| 
alpar@255
 | 
   323  | 
    ///Returns a reference to the NodeMap of the last but one nodes of the
  | 
| 
jacint@385
 | 
   324  | 
    ///shortest path tree.
  | 
| 
alpar@255
 | 
   325  | 
    ///\pre \ref run() must be called before using this function.
  | 
| 
alpar@688
 | 
   326  | 
    const PredNodeMap &predNodeMap() const { return *pred_node;}
 | 
| 
alpar@255
 | 
   327  | 
  | 
| 
jacint@385
 | 
   328  | 
    ///Checks if a node is reachable from the root.
  | 
| 
alpar@255
 | 
   329  | 
  | 
| 
jacint@385
 | 
   330  | 
    ///Returns \c true if \c v is reachable from the root.
  | 
| 
alpar@802
 | 
   331  | 
    ///\note The root node is reported to be reached!
  | 
| 
alpar@255
 | 
   332  | 
    ///\pre \ref run() must be called before using this function.
  | 
| 
jacint@385
 | 
   333  | 
    ///
  | 
| 
alpar@780
 | 
   334  | 
    bool reached(Node v) { return v==source || (*predecessor)[v]!=INVALID; }
 | 
| 
alpar@255
 | 
   335  | 
    
  | 
| 
alpar@255
 | 
   336  | 
  };
  | 
| 
alpar@255
 | 
   337  | 
  
  | 
| 
alpar@430
 | 
   338  | 
/// @}
  | 
| 
alpar@255
 | 
   339  | 
  
  | 
| 
alpar@921
 | 
   340  | 
} //END OF NAMESPACE LEMON
  | 
| 
alpar@255
 | 
   341  | 
  | 
| 
alpar@255
 | 
   342  | 
#endif
  | 
| 
alpar@255
 | 
   343  | 
  | 
| 
alpar@255
 | 
   344  | 
  |