| 
alpar@906
 | 
     1  | 
/* -*- C++ -*-
  | 
| 
alpar@906
 | 
     2  | 
 * src/hugo/kruskal.h - Part of HUGOlib, a generic C++ optimization library
  | 
| 
alpar@906
 | 
     3  | 
 *
  | 
| 
alpar@906
 | 
     4  | 
 * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
  | 
| 
alpar@906
 | 
     5  | 
 * (Egervary Combinatorial Optimization Research Group, EGRES).
  | 
| 
alpar@906
 | 
     6  | 
 *
  | 
| 
alpar@906
 | 
     7  | 
 * Permission to use, modify and distribute this software is granted
  | 
| 
alpar@906
 | 
     8  | 
 * provided that this copyright notice appears in all copies. For
  | 
| 
alpar@906
 | 
     9  | 
 * precise terms see the accompanying LICENSE file.
  | 
| 
alpar@906
 | 
    10  | 
 *
  | 
| 
alpar@906
 | 
    11  | 
 * This software is provided "AS IS" with no warranty of any kind,
  | 
| 
alpar@906
 | 
    12  | 
 * express or implied, and with no claim as to its suitability for any
  | 
| 
alpar@906
 | 
    13  | 
 * purpose.
  | 
| 
alpar@906
 | 
    14  | 
 *
  | 
| 
alpar@906
 | 
    15  | 
 */
  | 
| 
alpar@906
 | 
    16  | 
  | 
| 
alpar@810
 | 
    17  | 
#ifndef HUGO_KRUSKAL_H
  | 
| 
alpar@810
 | 
    18  | 
#define HUGO_KRUSKAL_H
  | 
| 
alpar@810
 | 
    19  | 
  | 
| 
alpar@810
 | 
    20  | 
#include <algorithm>
  | 
| 
alpar@810
 | 
    21  | 
#include <hugo/unionfind.h>
  | 
| 
alpar@810
 | 
    22  | 
  | 
| 
alpar@810
 | 
    23  | 
/**
  | 
| 
alpar@810
 | 
    24  | 
@defgroup spantree Minimum Cost Spanning Tree Algorithms
  | 
| 
alpar@810
 | 
    25  | 
@ingroup galgs
  | 
| 
alpar@810
 | 
    26  | 
\brief This group containes the algorithms for finding a minimum cost spanning
  | 
| 
alpar@810
 | 
    27  | 
tree in a graph
  | 
| 
alpar@810
 | 
    28  | 
  | 
| 
alpar@810
 | 
    29  | 
This group containes the algorithms for finding a minimum cost spanning
  | 
| 
alpar@810
 | 
    30  | 
tree in a graph
  | 
| 
alpar@810
 | 
    31  | 
*/
  | 
| 
alpar@810
 | 
    32  | 
  | 
| 
alpar@810
 | 
    33  | 
///\ingroup spantree
  | 
| 
alpar@810
 | 
    34  | 
///\file
  | 
| 
alpar@810
 | 
    35  | 
///\brief Kruskal's algorithm to compute a minimum cost tree
  | 
| 
alpar@810
 | 
    36  | 
///
  | 
| 
alpar@810
 | 
    37  | 
///Kruskal's algorithm to compute a minimum cost tree.
  | 
| 
alpar@810
 | 
    38  | 
  | 
| 
alpar@810
 | 
    39  | 
namespace hugo {
 | 
| 
alpar@810
 | 
    40  | 
  | 
| 
alpar@810
 | 
    41  | 
  /// \addtogroup spantree
  | 
| 
alpar@810
 | 
    42  | 
  /// @{
 | 
| 
alpar@810
 | 
    43  | 
  | 
| 
alpar@810
 | 
    44  | 
  /// Kruskal's algorithm to find a minimum cost tree of a graph.
  | 
| 
alpar@810
 | 
    45  | 
  | 
| 
alpar@810
 | 
    46  | 
  /// This function runs Kruskal's algorithm to find a minimum cost tree.
  | 
| 
alpar@810
 | 
    47  | 
  /// \param G The graph the algorithm runs on. The algorithm considers the
  | 
| 
alpar@810
 | 
    48  | 
  /// graph to be undirected, the direction of the edges are not used.
  | 
| 
alpar@810
 | 
    49  | 
  ///
  | 
| 
alpar@810
 | 
    50  | 
  /// \param in This object is used to describe the edge costs. It must
  | 
| 
alpar@810
 | 
    51  | 
  /// be an STL compatible 'Forward Container'
  | 
| 
alpar@824
 | 
    52  | 
  /// with <tt>std::pair<GR::Edge,X></tt> as its <tt>value_type</tt>,
  | 
| 
alpar@810
 | 
    53  | 
  /// where X is the type of the costs. It must contain every edge in
  | 
| 
alpar@810
 | 
    54  | 
  /// cost-ascending order.
  | 
| 
alpar@810
 | 
    55  | 
  ///\par
  | 
| 
alpar@810
 | 
    56  | 
  /// For the sake of simplicity, there is a helper class KruskalMapInput,
  | 
| 
alpar@810
 | 
    57  | 
  /// which converts a
  | 
| 
alpar@810
 | 
    58  | 
  /// simple edge map to an input of this form. Alternatively, you can use
  | 
| 
alpar@810
 | 
    59  | 
  /// the function \ref kruskalEdgeMap to compute the minimum cost tree if
  | 
| 
alpar@810
 | 
    60  | 
  /// the edge costs are given by an edge map.
  | 
| 
alpar@810
 | 
    61  | 
  ///
  | 
| 
alpar@810
 | 
    62  | 
  /// \retval out This must be a writable \c bool edge map.
  | 
| 
alpar@810
 | 
    63  | 
  /// After running the algorithm
  | 
| 
alpar@810
 | 
    64  | 
  /// this will contain the found minimum cost spanning tree: the value of an
  | 
| 
alpar@810
 | 
    65  | 
  /// edge will be set to \c true if it belongs to the tree, otherwise it will
  | 
| 
alpar@810
 | 
    66  | 
  /// be set to \c false. The value of each edge will be set exactly once.
  | 
| 
alpar@810
 | 
    67  | 
  ///
  | 
| 
alpar@810
 | 
    68  | 
  /// \return The cost of the found tree.
  | 
| 
alpar@810
 | 
    69  | 
  | 
| 
alpar@824
 | 
    70  | 
  template <class GR, class IN, class OUT>
  | 
| 
alpar@824
 | 
    71  | 
  typename IN::value_type::second_type
  | 
| 
alpar@824
 | 
    72  | 
  kruskal(GR const& G, IN const& in, 
  | 
| 
alpar@824
 | 
    73  | 
		 OUT& out)
  | 
| 
alpar@810
 | 
    74  | 
  {
 | 
| 
alpar@824
 | 
    75  | 
    typedef typename IN::value_type::second_type EdgeCost;
  | 
| 
alpar@824
 | 
    76  | 
    typedef typename GR::template NodeMap<int> NodeIntMap;
  | 
| 
alpar@824
 | 
    77  | 
    typedef typename GR::Node Node;
  | 
| 
alpar@810
 | 
    78  | 
  | 
| 
alpar@810
 | 
    79  | 
    NodeIntMap comp(G, -1);
  | 
| 
alpar@810
 | 
    80  | 
    UnionFind<Node,NodeIntMap> uf(comp); 
  | 
| 
alpar@810
 | 
    81  | 
      
  | 
| 
alpar@810
 | 
    82  | 
    EdgeCost tot_cost = 0;
  | 
| 
alpar@824
 | 
    83  | 
    for (typename IN::const_iterator p = in.begin(); 
  | 
| 
alpar@810
 | 
    84  | 
	 p!=in.end(); ++p ) {
 | 
| 
alpar@810
 | 
    85  | 
      if ( uf.join(G.head((*p).first),
  | 
| 
alpar@810
 | 
    86  | 
		   G.tail((*p).first)) ) {
 | 
| 
alpar@810
 | 
    87  | 
	out.set((*p).first, true);
  | 
| 
alpar@810
 | 
    88  | 
	tot_cost += (*p).second;
  | 
| 
alpar@810
 | 
    89  | 
      }
  | 
| 
alpar@810
 | 
    90  | 
      else {
 | 
| 
alpar@810
 | 
    91  | 
	out.set((*p).first, false);
  | 
| 
alpar@810
 | 
    92  | 
      }
  | 
| 
alpar@810
 | 
    93  | 
    }
  | 
| 
alpar@810
 | 
    94  | 
    return tot_cost;
  | 
| 
alpar@810
 | 
    95  | 
  }
  | 
| 
alpar@810
 | 
    96  | 
  | 
| 
alpar@810
 | 
    97  | 
  /* A work-around for running Kruskal with const-reference bool maps... */
  | 
| 
alpar@810
 | 
    98  | 
  | 
| 
klao@885
 | 
    99  | 
  /// Helper class for calling kruskal with "constant" output map.
  | 
| 
klao@885
 | 
   100  | 
  | 
| 
klao@885
 | 
   101  | 
  /// Helper class for calling kruskal with output maps constructed
  | 
| 
klao@885
 | 
   102  | 
  /// on-the-fly.
  | 
| 
alpar@810
 | 
   103  | 
  ///
  | 
| 
klao@885
 | 
   104  | 
  /// A typical examle is the following call:
  | 
| 
klao@885
 | 
   105  | 
  /// <tt>kruskal(G, some_input, makeSequenceOutput(iterator))</tt>.
  | 
| 
klao@885
 | 
   106  | 
  /// Here, the third argument is a temporary object (which wraps around an
  | 
| 
klao@885
 | 
   107  | 
  /// iterator with a writable bool map interface), and thus by rules of C++
  | 
| 
klao@885
 | 
   108  | 
  /// is a \c const object. To enable call like this exist this class and
  | 
| 
klao@885
 | 
   109  | 
  /// the prototype of the \ref kruskal() function with <tt>const& OUT</tt>
  | 
| 
klao@885
 | 
   110  | 
  /// third argument.
  | 
| 
alpar@824
 | 
   111  | 
  template<class Map>
  | 
| 
alpar@810
 | 
   112  | 
  class NonConstMapWr {
 | 
| 
alpar@810
 | 
   113  | 
    const Map &m;
  | 
| 
alpar@810
 | 
   114  | 
  public:
  | 
| 
alpar@810
 | 
   115  | 
    typedef typename Map::ValueType ValueType;
  | 
| 
alpar@810
 | 
   116  | 
  | 
| 
alpar@810
 | 
   117  | 
    NonConstMapWr(const Map &_m) : m(_m) {}
 | 
| 
alpar@810
 | 
   118  | 
  | 
| 
alpar@824
 | 
   119  | 
    template<class KeyType>
  | 
| 
alpar@810
 | 
   120  | 
    void set(KeyType const& k, ValueType const &v) const { m.set(k,v); }
 | 
| 
alpar@810
 | 
   121  | 
  };
  | 
| 
alpar@810
 | 
   122  | 
  | 
| 
alpar@824
 | 
   123  | 
  template <class GR, class IN, class OUT>
  | 
| 
alpar@810
 | 
   124  | 
  inline
  | 
| 
klao@885
 | 
   125  | 
  typename IN::value_type::second_type
  | 
| 
klao@885
 | 
   126  | 
  kruskal(GR const& G, IN const& edges, OUT const& out_map)
  | 
| 
alpar@810
 | 
   127  | 
  {
 | 
| 
alpar@824
 | 
   128  | 
    NonConstMapWr<OUT> map_wr(out_map);
  | 
| 
alpar@810
 | 
   129  | 
    return kruskal(G, edges, map_wr);
  | 
| 
alpar@810
 | 
   130  | 
  }  
  | 
| 
alpar@810
 | 
   131  | 
  | 
| 
alpar@810
 | 
   132  | 
  /* ** ** Input-objects ** ** */
  | 
| 
alpar@810
 | 
   133  | 
  | 
| 
alpar@810
 | 
   134  | 
  /// Kruskal input source.
  | 
| 
alpar@810
 | 
   135  | 
  | 
| 
alpar@810
 | 
   136  | 
  /// Kruskal input source.
  | 
| 
alpar@810
 | 
   137  | 
  ///
  | 
| 
alpar@810
 | 
   138  | 
  /// In most cases you possibly want to use the \ref kruskalEdgeMap() instead.
  | 
| 
alpar@810
 | 
   139  | 
  ///
  | 
| 
alpar@810
 | 
   140  | 
  /// \sa makeKruskalMapInput()
  | 
| 
alpar@810
 | 
   141  | 
  ///
  | 
| 
alpar@824
 | 
   142  | 
  ///\param GR The type of the graph the algorithm runs on.
  | 
| 
alpar@810
 | 
   143  | 
  ///\param Map An edge map containing the cost of the edges.
  | 
| 
alpar@810
 | 
   144  | 
  ///\par
  | 
| 
alpar@810
 | 
   145  | 
  ///The cost type can be any type satisfying
  | 
| 
alpar@810
 | 
   146  | 
  ///the STL 'LessThan comparable'
  | 
| 
alpar@810
 | 
   147  | 
  ///concept if it also has an operator+() implemented. (It is necessary for
  | 
| 
alpar@810
 | 
   148  | 
  ///computing the total cost of the tree).
  | 
| 
alpar@810
 | 
   149  | 
  ///
  | 
| 
alpar@824
 | 
   150  | 
  template<class GR, class Map>
  | 
| 
alpar@810
 | 
   151  | 
  class KruskalMapInput
  | 
| 
alpar@824
 | 
   152  | 
    : public std::vector< std::pair<typename GR::Edge,
  | 
| 
alpar@810
 | 
   153  | 
				    typename Map::ValueType> > {
 | 
| 
alpar@810
 | 
   154  | 
    
  | 
| 
alpar@810
 | 
   155  | 
  public:
  | 
| 
alpar@824
 | 
   156  | 
    typedef std::vector< std::pair<typename GR::Edge,
  | 
| 
alpar@810
 | 
   157  | 
				   typename Map::ValueType> > Parent;
  | 
| 
alpar@810
 | 
   158  | 
    typedef typename Parent::value_type value_type;
  | 
| 
alpar@810
 | 
   159  | 
  | 
| 
alpar@810
 | 
   160  | 
  private:
  | 
| 
alpar@810
 | 
   161  | 
    class comparePair {
 | 
| 
alpar@810
 | 
   162  | 
    public:
  | 
| 
alpar@810
 | 
   163  | 
      bool operator()(const value_type& a,
  | 
| 
alpar@810
 | 
   164  | 
		      const value_type& b) {
 | 
| 
alpar@810
 | 
   165  | 
	return a.second < b.second;
  | 
| 
alpar@810
 | 
   166  | 
      }
  | 
| 
alpar@810
 | 
   167  | 
    };
  | 
| 
alpar@810
 | 
   168  | 
  | 
| 
alpar@810
 | 
   169  | 
  public:
  | 
| 
alpar@810
 | 
   170  | 
  | 
| 
alpar@810
 | 
   171  | 
    void sort() {
 | 
| 
alpar@810
 | 
   172  | 
      std::sort(this->begin(), this->end(), comparePair());
  | 
| 
alpar@810
 | 
   173  | 
    }
  | 
| 
alpar@810
 | 
   174  | 
  | 
| 
alpar@824
 | 
   175  | 
    KruskalMapInput(GR const& G, Map const& m) {
 | 
| 
alpar@824
 | 
   176  | 
      typedef typename GR::EdgeIt EdgeIt;
  | 
| 
alpar@810
 | 
   177  | 
      
  | 
| 
klao@885
 | 
   178  | 
      for(EdgeIt e(G);e!=INVALID;++e) push_back(value_type(e, m[e]));
  | 
| 
alpar@810
 | 
   179  | 
      sort();
  | 
| 
alpar@810
 | 
   180  | 
    }
  | 
| 
alpar@810
 | 
   181  | 
  };
  | 
| 
alpar@810
 | 
   182  | 
  | 
| 
alpar@810
 | 
   183  | 
  /// Creates a KruskalMapInput object for \ref kruskal()
  | 
| 
alpar@810
 | 
   184  | 
  | 
| 
alpar@810
 | 
   185  | 
  /// It makes is easier to use 
  | 
| 
alpar@810
 | 
   186  | 
  /// \ref KruskalMapInput by making it unnecessary 
  | 
| 
alpar@810
 | 
   187  | 
  /// to explicitly give the type of the parameters.
  | 
| 
alpar@810
 | 
   188  | 
  ///
  | 
| 
alpar@810
 | 
   189  | 
  /// In most cases you possibly
  | 
| 
alpar@810
 | 
   190  | 
  /// want to use the function kruskalEdgeMap() instead.
  | 
| 
alpar@810
 | 
   191  | 
  ///
  | 
| 
alpar@810
 | 
   192  | 
  ///\param G The type of the graph the algorithm runs on.
  | 
| 
alpar@810
 | 
   193  | 
  ///\param m An edge map containing the cost of the edges.
  | 
| 
alpar@810
 | 
   194  | 
  ///\par
  | 
| 
alpar@810
 | 
   195  | 
  ///The cost type can be any type satisfying the
  | 
| 
alpar@810
 | 
   196  | 
  ///STL 'LessThan Comparable'
  | 
| 
alpar@810
 | 
   197  | 
  ///concept if it also has an operator+() implemented. (It is necessary for
  | 
| 
alpar@810
 | 
   198  | 
  ///computing the total cost of the tree).
  | 
| 
alpar@810
 | 
   199  | 
  ///
  | 
| 
alpar@810
 | 
   200  | 
  ///\return An appropriate input source for \ref kruskal().
  | 
| 
alpar@810
 | 
   201  | 
  ///
  | 
| 
alpar@824
 | 
   202  | 
  template<class GR, class Map>
  | 
| 
alpar@810
 | 
   203  | 
  inline
  | 
| 
alpar@824
 | 
   204  | 
  KruskalMapInput<GR,Map> makeKruskalMapInput(const GR &G,const Map &m)
  | 
| 
alpar@810
 | 
   205  | 
  {
 | 
| 
alpar@824
 | 
   206  | 
    return KruskalMapInput<GR,Map>(G,m);
  | 
| 
alpar@810
 | 
   207  | 
  }
  | 
| 
alpar@810
 | 
   208  | 
  
  | 
| 
alpar@810
 | 
   209  | 
  
  | 
| 
klao@885
 | 
   210  | 
  | 
| 
klao@885
 | 
   211  | 
  /* ** ** Output-objects: simple writable bool maps ** ** */
  | 
| 
alpar@810
 | 
   212  | 
  
  | 
| 
klao@885
 | 
   213  | 
  | 
| 
klao@885
 | 
   214  | 
  | 
| 
alpar@810
 | 
   215  | 
  /// A writable bool-map that makes a sequence of "true" keys
  | 
| 
alpar@810
 | 
   216  | 
  | 
| 
alpar@810
 | 
   217  | 
  /// A writable bool-map that creates a sequence out of keys that receives
  | 
| 
alpar@810
 | 
   218  | 
  /// the value "true".
  | 
| 
klao@885
 | 
   219  | 
  ///
  | 
| 
klao@885
 | 
   220  | 
  /// \sa makeKruskalSequenceOutput()
  | 
| 
klao@885
 | 
   221  | 
  ///
  | 
| 
klao@885
 | 
   222  | 
  /// Very often, when looking for a min cost spanning tree, we want as
  | 
| 
klao@885
 | 
   223  | 
  /// output a container containing the edges of the found tree. For this
  | 
| 
klao@885
 | 
   224  | 
  /// purpose exist this class that wraps around an STL iterator with a
  | 
| 
klao@885
 | 
   225  | 
  /// writable bool map interface. When a key gets value "true" this key
  | 
| 
klao@885
 | 
   226  | 
  /// is added to sequence pointed by the iterator.
  | 
| 
klao@885
 | 
   227  | 
  ///
  | 
| 
klao@885
 | 
   228  | 
  /// A typical usage:
  | 
| 
klao@885
 | 
   229  | 
  /// \code
  | 
| 
klao@885
 | 
   230  | 
  /// std::vector<Graph::Edge> v;
  | 
| 
klao@885
 | 
   231  | 
  /// kruskal(g, input, makeKruskalSequenceOutput(back_inserter(v)));
  | 
| 
klao@885
 | 
   232  | 
  /// \endcode
  | 
| 
klao@885
 | 
   233  | 
  /// 
  | 
| 
klao@885
 | 
   234  | 
  /// For the most common case, when the input is given by a simple edge
  | 
| 
klao@885
 | 
   235  | 
  /// map and the output is a sequence of the tree edges, a special
  | 
| 
klao@885
 | 
   236  | 
  /// wrapper function exists: \ref kruskalEdgeMap_IteratorOut().
  | 
| 
klao@885
 | 
   237  | 
  ///
  | 
| 
alpar@810
 | 
   238  | 
  /// \warning Not a regular property map, as it doesn't know its KeyType
  | 
| 
klao@885
 | 
   239  | 
  | 
| 
alpar@824
 | 
   240  | 
  template<class Iterator>
  | 
| 
klao@885
 | 
   241  | 
  class KruskalSequenceOutput {
 | 
| 
alpar@810
 | 
   242  | 
    mutable Iterator it;
  | 
| 
alpar@810
 | 
   243  | 
  | 
| 
alpar@810
 | 
   244  | 
  public:
  | 
| 
alpar@810
 | 
   245  | 
    typedef bool ValueType;
  | 
| 
alpar@810
 | 
   246  | 
  | 
| 
klao@885
 | 
   247  | 
    KruskalSequenceOutput(Iterator const &_it) : it(_it) {}
 | 
| 
alpar@810
 | 
   248  | 
  | 
| 
alpar@810
 | 
   249  | 
    template<typename KeyType>
  | 
| 
alpar@810
 | 
   250  | 
    void set(KeyType const& k, bool v) const { if(v) {*it=k; ++it;} }
 | 
| 
alpar@810
 | 
   251  | 
  };
  | 
| 
alpar@810
 | 
   252  | 
  | 
| 
alpar@824
 | 
   253  | 
  template<class Iterator>
  | 
| 
alpar@810
 | 
   254  | 
  inline
  | 
| 
klao@885
 | 
   255  | 
  KruskalSequenceOutput<Iterator>
  | 
| 
klao@885
 | 
   256  | 
  makeKruskalSequenceOutput(Iterator it) {
 | 
| 
klao@885
 | 
   257  | 
    return KruskalSequenceOutput<Iterator>(it);
  | 
| 
alpar@810
 | 
   258  | 
  }
  | 
| 
alpar@810
 | 
   259  | 
  | 
| 
klao@885
 | 
   260  | 
  | 
| 
klao@885
 | 
   261  | 
  | 
| 
alpar@810
 | 
   262  | 
  /* ** ** Wrapper funtions ** ** */
  | 
| 
alpar@810
 | 
   263  | 
  | 
| 
alpar@810
 | 
   264  | 
  | 
| 
klao@885
 | 
   265  | 
  | 
| 
alpar@810
 | 
   266  | 
  /// \brief Wrapper function to kruskal().
  | 
| 
alpar@810
 | 
   267  | 
  /// Input is from an edge map, output is a plain bool map.
  | 
| 
alpar@810
 | 
   268  | 
  ///
  | 
| 
alpar@810
 | 
   269  | 
  /// Wrapper function to kruskal().
  | 
| 
alpar@810
 | 
   270  | 
  /// Input is from an edge map, output is a plain bool map.
  | 
| 
alpar@810
 | 
   271  | 
  ///
  | 
| 
alpar@810
 | 
   272  | 
  ///\param G The type of the graph the algorithm runs on.
  | 
| 
alpar@810
 | 
   273  | 
  ///\param in An edge map containing the cost of the edges.
  | 
| 
alpar@810
 | 
   274  | 
  ///\par
  | 
| 
alpar@810
 | 
   275  | 
  ///The cost type can be any type satisfying the
  | 
| 
alpar@810
 | 
   276  | 
  ///STL 'LessThan Comparable'
  | 
| 
alpar@810
 | 
   277  | 
  ///concept if it also has an operator+() implemented. (It is necessary for
  | 
| 
alpar@810
 | 
   278  | 
  ///computing the total cost of the tree).
  | 
| 
alpar@810
 | 
   279  | 
  ///
  | 
| 
alpar@810
 | 
   280  | 
  /// \retval out This must be a writable \c bool edge map.
  | 
| 
alpar@810
 | 
   281  | 
  /// After running the algorithm
  | 
| 
alpar@810
 | 
   282  | 
  /// this will contain the found minimum cost spanning tree: the value of an
  | 
| 
alpar@810
 | 
   283  | 
  /// edge will be set to \c true if it belongs to the tree, otherwise it will
  | 
| 
alpar@810
 | 
   284  | 
  /// be set to \c false. The value of each edge will be set exactly once.
  | 
| 
alpar@810
 | 
   285  | 
  ///
  | 
| 
alpar@810
 | 
   286  | 
  /// \return The cost of the found tree.
  | 
| 
alpar@810
 | 
   287  | 
  | 
| 
alpar@824
 | 
   288  | 
  template <class GR, class IN, class RET>
  | 
| 
alpar@810
 | 
   289  | 
  inline
  | 
| 
alpar@824
 | 
   290  | 
  typename IN::ValueType
  | 
| 
alpar@824
 | 
   291  | 
  kruskalEdgeMap(GR const& G,
  | 
| 
alpar@824
 | 
   292  | 
		 IN const& in,
  | 
| 
alpar@824
 | 
   293  | 
		 RET &out) {
 | 
| 
alpar@810
 | 
   294  | 
    return kruskal(G,
  | 
| 
alpar@824
 | 
   295  | 
		   KruskalMapInput<GR,IN>(G,in),
  | 
| 
alpar@810
 | 
   296  | 
		   out);
  | 
| 
alpar@810
 | 
   297  | 
  }
  | 
| 
alpar@810
 | 
   298  | 
  | 
| 
alpar@810
 | 
   299  | 
  /// \brief Wrapper function to kruskal().
  | 
| 
alpar@810
 | 
   300  | 
  /// Input is from an edge map, output is an STL Sequence.
  | 
| 
alpar@810
 | 
   301  | 
  ///
  | 
| 
alpar@810
 | 
   302  | 
  /// Wrapper function to kruskal().
  | 
| 
alpar@810
 | 
   303  | 
  /// Input is from an edge map, output is an STL Sequence.
  | 
| 
alpar@810
 | 
   304  | 
  ///
  | 
| 
alpar@810
 | 
   305  | 
  ///\param G The type of the graph the algorithm runs on.
  | 
| 
alpar@810
 | 
   306  | 
  ///\param in An edge map containing the cost of the edges.
  | 
| 
alpar@810
 | 
   307  | 
  ///\par
  | 
| 
alpar@810
 | 
   308  | 
  ///The cost type can be any type satisfying the
  | 
| 
alpar@810
 | 
   309  | 
  ///STL 'LessThan Comparable'
  | 
| 
alpar@810
 | 
   310  | 
  ///concept if it also has an operator+() implemented. (It is necessary for
  | 
| 
alpar@810
 | 
   311  | 
  ///computing the total cost of the tree).
  | 
| 
alpar@810
 | 
   312  | 
  ///
  | 
| 
alpar@810
 | 
   313  | 
  /// \retval out This must be an iteraror of an STL Container with
  | 
| 
alpar@824
 | 
   314  | 
  /// <tt>GR::Edge</tt> as its <tt>value_type</tt>.
  | 
| 
alpar@810
 | 
   315  | 
  /// The algorithm copies the elements of the found tree into this sequence.
  | 
| 
alpar@810
 | 
   316  | 
  /// For example, if we know that the spanning tree of the graph \c G has
  | 
| 
alpar@810
 | 
   317  | 
  /// say 53 edges then
  | 
| 
alpar@824
 | 
   318  | 
  /// we can put its edges into a STL vector \c tree with a code like this.
  | 
| 
alpar@810
 | 
   319  | 
  /// \code
  | 
| 
alpar@810
 | 
   320  | 
  /// std::vector<Edge> tree(53);
  | 
| 
alpar@810
 | 
   321  | 
  /// kruskalEdgeMap_IteratorOut(G,cost,tree.begin());
  | 
| 
alpar@810
 | 
   322  | 
  /// \endcode
  | 
| 
alpar@810
 | 
   323  | 
  /// Or if we don't know in advance the size of the tree, we can write this.
  | 
| 
alpar@810
 | 
   324  | 
  /// \code
  | 
| 
alpar@810
 | 
   325  | 
  /// std::vector<Edge> tree;
  | 
| 
alpar@810
 | 
   326  | 
  /// kruskalEdgeMap_IteratorOut(G,cost,std::back_inserter(tree));
  | 
| 
alpar@810
 | 
   327  | 
  /// \endcode
  | 
| 
alpar@810
 | 
   328  | 
  ///
  | 
| 
alpar@810
 | 
   329  | 
  /// \return The cost of the found tree.
  | 
| 
alpar@810
 | 
   330  | 
  ///
  | 
| 
alpar@810
 | 
   331  | 
  /// \bug its name does not follow the coding style.
  | 
| 
klao@885
 | 
   332  | 
  | 
| 
alpar@824
 | 
   333  | 
  template <class GR, class IN, class RET>
  | 
| 
alpar@810
 | 
   334  | 
  inline
  | 
| 
alpar@824
 | 
   335  | 
  typename IN::ValueType
  | 
| 
alpar@824
 | 
   336  | 
  kruskalEdgeMap_IteratorOut(const GR& G,
  | 
| 
alpar@824
 | 
   337  | 
			     const IN& in,
  | 
| 
alpar@824
 | 
   338  | 
			     RET out)
  | 
| 
alpar@810
 | 
   339  | 
  {
 | 
| 
klao@885
 | 
   340  | 
    KruskalSequenceOutput<RET> _out(out);
  | 
| 
klao@885
 | 
   341  | 
    return kruskal(G, KruskalMapInput<GR,IN>(G, in), _out);
  | 
| 
alpar@810
 | 
   342  | 
  }
  | 
| 
alpar@810
 | 
   343  | 
  | 
| 
alpar@810
 | 
   344  | 
  /// @}
  | 
| 
alpar@810
 | 
   345  | 
  | 
| 
alpar@810
 | 
   346  | 
} //namespace hugo
  | 
| 
alpar@810
 | 
   347  | 
  | 
| 
alpar@810
 | 
   348  | 
#endif //HUGO_KRUSKAL_H
  |