| 
athos@610
 | 
     1  | 
// -*- c++ -*-
  | 
| 
athos@633
 | 
     2  | 
#ifndef HUGO_MINCOSTFLOW_H
  | 
| 
athos@633
 | 
     3  | 
#define HUGO_MINCOSTFLOW_H
  | 
| 
athos@610
 | 
     4  | 
  | 
| 
athos@610
 | 
     5  | 
///\ingroup galgs
  | 
| 
athos@610
 | 
     6  | 
///\file
  | 
| 
athos@645
 | 
     7  | 
///\brief An algorithm for finding the minimum cost flow of given value in an uncapacitated network
  | 
| 
athos@611
 | 
     8  | 
  | 
| 
athos@610
 | 
     9  | 
#include <hugo/dijkstra.h>
  | 
| 
athos@610
 | 
    10  | 
#include <hugo/graph_wrapper.h>
  | 
| 
athos@610
 | 
    11  | 
#include <hugo/maps.h>
  | 
| 
athos@610
 | 
    12  | 
#include <vector>
  | 
| 
athos@657
 | 
    13  | 
#include <list>
  | 
| 
athos@662
 | 
    14  | 
#include <values.h>
  | 
| 
athos@661
 | 
    15  | 
#include <hugo/for_each_macros.h>
  | 
| 
athos@661
 | 
    16  | 
#include <hugo/unionfind.h>
  | 
| 
athos@662
 | 
    17  | 
#include <hugo/bin_heap.h>
  | 
| 
athos@662
 | 
    18  | 
#include <bfs_dfs.h>
  | 
| 
athos@610
 | 
    19  | 
  | 
| 
athos@610
 | 
    20  | 
namespace hugo {
 | 
| 
athos@610
 | 
    21  | 
  | 
| 
athos@610
 | 
    22  | 
/// \addtogroup galgs
  | 
| 
athos@610
 | 
    23  | 
/// @{
 | 
| 
athos@610
 | 
    24  | 
  | 
| 
athos@661
 | 
    25  | 
  ///\brief Implementation of an algorithm for solving the minimum cost general
  | 
| 
athos@661
 | 
    26  | 
  /// flow problem in an uncapacitated network
  | 
| 
athos@610
 | 
    27  | 
  /// 
  | 
| 
athos@610
 | 
    28  | 
  ///
  | 
| 
athos@633
 | 
    29  | 
  /// The class \ref hugo::MinCostFlow "MinCostFlow" implements
  | 
| 
athos@633
 | 
    30  | 
  /// an algorithm for solving the following general minimum cost flow problem>
  | 
| 
athos@633
 | 
    31  | 
  /// 
  | 
| 
athos@633
 | 
    32  | 
  ///
  | 
| 
athos@633
 | 
    33  | 
  ///
  | 
| 
athos@633
 | 
    34  | 
  /// \warning It is assumed here that the problem has a feasible solution
  | 
| 
athos@633
 | 
    35  | 
  ///
  | 
| 
athos@661
 | 
    36  | 
  /// The range of the cost (weight) function is nonnegative reals but 
  | 
| 
athos@610
 | 
    37  | 
  /// the range of capacity function is the set of nonnegative integers. 
  | 
| 
athos@610
 | 
    38  | 
  /// It is not a polinomial time algorithm for counting the minimum cost
  | 
| 
athos@610
 | 
    39  | 
  /// maximal flow, since it counts the minimum cost flow for every value 0..M
  | 
| 
athos@610
 | 
    40  | 
  /// where \c M is the value of the maximal flow.
  | 
| 
athos@610
 | 
    41  | 
  ///
  | 
| 
athos@610
 | 
    42  | 
  ///\author Attila Bernath
  | 
| 
athos@661
 | 
    43  | 
  template <typename Graph, typename CostMap, typename SupplyDemandMap>
  | 
| 
athos@633
 | 
    44  | 
  class MinCostFlow {
 | 
| 
athos@610
 | 
    45  | 
  | 
| 
athos@661
 | 
    46  | 
    typedef typename CostMap::ValueType Cost;
  | 
| 
athos@610
 | 
    47  | 
  | 
| 
athos@633
 | 
    48  | 
  | 
| 
athos@635
 | 
    49  | 
    typedef typename SupplyDemandMap::ValueType SupplyDemand;
  | 
| 
athos@610
 | 
    50  | 
    
  | 
| 
athos@610
 | 
    51  | 
    typedef typename Graph::Node Node;
  | 
| 
athos@610
 | 
    52  | 
    typedef typename Graph::NodeIt NodeIt;
  | 
| 
athos@610
 | 
    53  | 
    typedef typename Graph::Edge Edge;
  | 
| 
athos@610
 | 
    54  | 
    typedef typename Graph::OutEdgeIt OutEdgeIt;
  | 
| 
athos@661
 | 
    55  | 
    typedef typename Graph::template EdgeMap<SupplyDemand> FlowMap;
  | 
| 
athos@661
 | 
    56  | 
    typedef ConstMap<Edge,SupplyDemand> ConstEdgeMap;
  | 
| 
athos@610
 | 
    57  | 
  | 
| 
athos@610
 | 
    58  | 
    //    typedef ConstMap<Edge,int> ConstMap;
  | 
| 
athos@610
 | 
    59  | 
  | 
| 
athos@661
 | 
    60  | 
    typedef ResGraphWrapper<const Graph,int,ConstEdgeMap,FlowMap> ResGraph;
  | 
| 
athos@661
 | 
    61  | 
    typedef typename ResGraph::Edge ResGraphEdge;
  | 
| 
athos@610
 | 
    62  | 
  | 
| 
athos@661
 | 
    63  | 
    class ModCostMap {   
 | 
| 
athos@661
 | 
    64  | 
      //typedef typename ResGraph::template NodeMap<Cost> NodeMap;
  | 
| 
athos@661
 | 
    65  | 
      typedef typename Graph::template NodeMap<Cost> NodeMap;
  | 
| 
athos@661
 | 
    66  | 
      const ResGraph& res_graph;
  | 
| 
athos@610
 | 
    67  | 
      //      const EdgeIntMap& rev;
  | 
| 
athos@661
 | 
    68  | 
      const CostMap &ol;
  | 
| 
athos@610
 | 
    69  | 
      const NodeMap &pot;
  | 
| 
athos@610
 | 
    70  | 
    public :
  | 
| 
athos@661
 | 
    71  | 
      typedef typename CostMap::KeyType KeyType;
  | 
| 
athos@661
 | 
    72  | 
      typedef typename CostMap::ValueType ValueType;
  | 
| 
athos@610
 | 
    73  | 
	
  | 
| 
athos@661
 | 
    74  | 
      ValueType operator[](typename ResGraph::Edge e) const {     
 | 
| 
athos@659
 | 
    75  | 
	if (res_graph.forward(e))
  | 
| 
athos@659
 | 
    76  | 
	  return  ol[e]-(pot[res_graph.head(e)]-pot[res_graph.tail(e)]);   
  | 
| 
athos@610
 | 
    77  | 
	else
  | 
| 
athos@659
 | 
    78  | 
	  return -ol[e]-(pot[res_graph.head(e)]-pot[res_graph.tail(e)]);   
  | 
| 
athos@610
 | 
    79  | 
      }     
  | 
| 
athos@610
 | 
    80  | 
	
  | 
| 
athos@661
 | 
    81  | 
      ModCostMap(const ResGraph& _res_graph,
  | 
| 
athos@661
 | 
    82  | 
		   const CostMap &o,  const NodeMap &p) : 
  | 
| 
athos@659
 | 
    83  | 
	res_graph(_res_graph), /*rev(_rev),*/ ol(o), pot(p){}; 
 | 
| 
athos@661
 | 
    84  | 
    };//ModCostMap
  | 
| 
athos@610
 | 
    85  | 
  | 
| 
athos@610
 | 
    86  | 
  | 
| 
athos@610
 | 
    87  | 
  protected:
  | 
| 
athos@610
 | 
    88  | 
    
  | 
| 
athos@610
 | 
    89  | 
    //Input
  | 
| 
athos@659
 | 
    90  | 
    const Graph& graph;
  | 
| 
athos@661
 | 
    91  | 
    const CostMap& cost;
  | 
| 
athos@635
 | 
    92  | 
    const SupplyDemandMap& supply_demand;//supply or demand of nodes
  | 
| 
athos@610
 | 
    93  | 
  | 
| 
athos@610
 | 
    94  | 
  | 
| 
athos@610
 | 
    95  | 
    //auxiliary variables
  | 
| 
athos@610
 | 
    96  | 
  | 
| 
athos@610
 | 
    97  | 
    //To store the flow
  | 
| 
athos@661
 | 
    98  | 
    FlowMap flow; 
  | 
| 
athos@662
 | 
    99  | 
    //To store the potential (dual variables)
  | 
| 
athos@662
 | 
   100  | 
    typedef typename Graph::template NodeMap<Cost> PotentialMap;
  | 
| 
athos@662
 | 
   101  | 
    PotentialMap potential;
  | 
| 
athos@610
 | 
   102  | 
    
  | 
| 
athos@610
 | 
   103  | 
  | 
| 
athos@661
 | 
   104  | 
    Cost total_cost;
  | 
| 
athos@610
 | 
   105  | 
  | 
| 
athos@610
 | 
   106  | 
  | 
| 
athos@610
 | 
   107  | 
  public :
  | 
| 
athos@610
 | 
   108  | 
  | 
| 
athos@610
 | 
   109  | 
  | 
| 
athos@662
 | 
   110  | 
   MinCostFlow(Graph& _graph, CostMap& _cost, SupplyDemandMap& _supply_demand):
  | 
| 
athos@662
 | 
   111  | 
     graph(_graph), 
  | 
| 
athos@662
 | 
   112  | 
     cost(_cost), 
  | 
| 
athos@662
 | 
   113  | 
     supply_demand(_supply_demand), 
  | 
| 
athos@662
 | 
   114  | 
     flow(_graph), 
  | 
| 
athos@672
 | 
   115  | 
     potential(_graph){ }
 | 
| 
athos@610
 | 
   116  | 
  | 
| 
athos@610
 | 
   117  | 
    
  | 
| 
athos@610
 | 
   118  | 
    ///Runs the algorithm.
  | 
| 
athos@610
 | 
   119  | 
  | 
| 
athos@610
 | 
   120  | 
    ///Runs the algorithm.
  | 
| 
athos@635
 | 
   121  | 
  | 
| 
athos@610
 | 
   122  | 
    ///\todo May be it does make sense to be able to start with a nonzero 
  | 
| 
athos@610
 | 
   123  | 
    /// feasible primal-dual solution pair as well.
  | 
| 
athos@659
 | 
   124  | 
    void run() {
 | 
| 
athos@610
 | 
   125  | 
  | 
| 
athos@672
 | 
   126  | 
      //To store excess-deficit values
  | 
| 
athos@672
 | 
   127  | 
      SupplyDemandMap excess_deficit(graph);
  | 
| 
athos@672
 | 
   128  | 
  | 
| 
athos@610
 | 
   129  | 
      //Resetting variables from previous runs
  | 
| 
athos@661
 | 
   130  | 
      //total_cost = 0;
  | 
| 
athos@635
 | 
   131  | 
  | 
| 
athos@672
 | 
   132  | 
  | 
| 
athos@635
 | 
   133  | 
      typedef typename Graph::template NodeMap<int> HeapMap;
  | 
| 
athos@662
 | 
   134  | 
      typedef BinHeap< Node, SupplyDemand, typename Graph::template NodeMap<int>,
  | 
| 
athos@635
 | 
   135  | 
	std::greater<SupplyDemand> > 	HeapType;
  | 
| 
athos@635
 | 
   136  | 
  | 
| 
athos@635
 | 
   137  | 
      //A heap for the excess nodes
  | 
| 
athos@659
 | 
   138  | 
      HeapMap excess_nodes_map(graph,-1);
  | 
| 
athos@635
 | 
   139  | 
      HeapType excess_nodes(excess_nodes_map);
  | 
| 
athos@635
 | 
   140  | 
  | 
| 
athos@635
 | 
   141  | 
      //A heap for the deficit nodes
  | 
| 
athos@659
 | 
   142  | 
      HeapMap deficit_nodes_map(graph,-1);
  | 
| 
athos@635
 | 
   143  | 
      HeapType deficit_nodes(deficit_nodes_map);
  | 
| 
athos@635
 | 
   144  | 
  | 
| 
athos@657
 | 
   145  | 
      //A container to store nonabundant arcs
  | 
| 
athos@662
 | 
   146  | 
      std::list<Edge> nonabundant_arcs;
  | 
| 
athos@659
 | 
   147  | 
  | 
| 
athos@659
 | 
   148  | 
	
  | 
| 
athos@659
 | 
   149  | 
      FOR_EACH_LOC(typename Graph::EdgeIt, e, graph){
 | 
| 
athos@610
 | 
   150  | 
	flow.set(e,0);
  | 
| 
athos@657
 | 
   151  | 
	nonabundant_arcs.push_back(e);
  | 
| 
athos@610
 | 
   152  | 
      }
  | 
| 
athos@633
 | 
   153  | 
  | 
| 
athos@633
 | 
   154  | 
      //Initial value for delta
  | 
| 
athos@635
 | 
   155  | 
      SupplyDemand delta = 0;
  | 
| 
athos@635
 | 
   156  | 
  | 
| 
athos@657
 | 
   157  | 
      typedef UnionFindEnum<Node, Graph::template NodeMap> UFE;
  | 
| 
athos@657
 | 
   158  | 
  | 
| 
athos@657
 | 
   159  | 
      //A union-find structure to store the abundant components
  | 
| 
athos@662
 | 
   160  | 
      typename UFE::MapType abund_comp_map(graph);
  | 
| 
athos@657
 | 
   161  | 
      UFE abundant_components(abund_comp_map);
  | 
| 
athos@657
 | 
   162  | 
  | 
| 
athos@657
 | 
   163  | 
  | 
| 
athos@657
 | 
   164  | 
  | 
| 
athos@659
 | 
   165  | 
      FOR_EACH_LOC(typename Graph::NodeIt, n, graph){
 | 
| 
athos@635
 | 
   166  | 
       	excess_deficit.set(n,supply_demand[n]);
  | 
| 
athos@635
 | 
   167  | 
	//A supply node
  | 
| 
athos@635
 | 
   168  | 
	if (excess_deficit[n] > 0){
 | 
| 
athos@635
 | 
   169  | 
	  excess_nodes.push(n,excess_deficit[n]);
  | 
| 
athos@633
 | 
   170  | 
	}
  | 
| 
athos@635
 | 
   171  | 
	//A demand node
  | 
| 
athos@635
 | 
   172  | 
	if (excess_deficit[n] < 0){
 | 
| 
athos@635
 | 
   173  | 
	  deficit_nodes.push(n, - excess_deficit[n]);
  | 
| 
athos@635
 | 
   174  | 
	}
  | 
| 
athos@635
 | 
   175  | 
	//Finding out starting value of delta
  | 
| 
athos@635
 | 
   176  | 
	if (delta < abs(excess_deficit[n])){
 | 
| 
athos@635
 | 
   177  | 
	  delta = abs(excess_deficit[n]);
  | 
| 
athos@635
 | 
   178  | 
	}
  | 
| 
athos@633
 | 
   179  | 
	//Initialize the copy of the Dijkstra potential to zero
  | 
| 
athos@610
 | 
   180  | 
	potential.set(n,0);
  | 
| 
athos@657
 | 
   181  | 
	//Every single point is an abundant component initially 
  | 
| 
athos@657
 | 
   182  | 
	abundant_components.insert(n);
  | 
| 
athos@610
 | 
   183  | 
      }
  | 
| 
athos@610
 | 
   184  | 
  | 
| 
athos@635
 | 
   185  | 
      //It'll be allright as an initial value, though this value 
  | 
| 
athos@635
 | 
   186  | 
      //can be the maximum deficit here
  | 
| 
athos@635
 | 
   187  | 
      SupplyDemand max_excess = delta;
  | 
| 
athos@610
 | 
   188  | 
      
  | 
| 
athos@661
 | 
   189  | 
      ///\bug This is a serious cheat here, before we have an uncapacitated ResGraph
  | 
| 
athos@662
 | 
   190  | 
      ConstEdgeMap const_inf_map(MAXINT);
  | 
| 
athos@661
 | 
   191  | 
      
  | 
| 
athos@633
 | 
   192  | 
      //We need a residual graph which is uncapacitated
  | 
| 
athos@661
 | 
   193  | 
      ResGraph res_graph(graph, const_inf_map, flow);
  | 
| 
athos@659
 | 
   194  | 
      
  | 
| 
athos@659
 | 
   195  | 
      //An EdgeMap to tell which arcs are abundant
  | 
| 
athos@662
 | 
   196  | 
      typename Graph::template EdgeMap<bool> abundant_arcs(graph);
  | 
| 
athos@610
 | 
   197  | 
  | 
| 
athos@659
 | 
   198  | 
      //Let's construct the sugraph consisting only of the abundant edges
  | 
| 
athos@659
 | 
   199  | 
      typedef ConstMap< typename Graph::Node, bool > ConstNodeMap;
  | 
| 
athos@672
 | 
   200  | 
  | 
| 
athos@659
 | 
   201  | 
      ConstNodeMap const_true_map(true);
  | 
| 
athos@662
 | 
   202  | 
      typedef SubGraphWrapper< const Graph, ConstNodeMap, 
  | 
| 
athos@662
 | 
   203  | 
	 typename Graph::template EdgeMap<bool> > 
  | 
| 
athos@659
 | 
   204  | 
	AbundantGraph;
  | 
| 
athos@659
 | 
   205  | 
      AbundantGraph abundant_graph(graph, const_true_map, abundant_arcs );
  | 
| 
athos@659
 | 
   206  | 
      
  | 
| 
athos@659
 | 
   207  | 
      //Let's construct the residual graph for the abundant graph
  | 
| 
athos@662
 | 
   208  | 
      typedef ResGraphWrapper<const AbundantGraph,int,ConstEdgeMap,FlowMap> 
  | 
| 
athos@659
 | 
   209  | 
	ResAbGraph;
  | 
| 
athos@659
 | 
   210  | 
      //Again uncapacitated
  | 
| 
athos@661
 | 
   211  | 
      ResAbGraph res_ab_graph(abundant_graph, const_inf_map, flow);
  | 
| 
athos@659
 | 
   212  | 
      
  | 
| 
athos@659
 | 
   213  | 
      //We need things for the bfs
  | 
| 
athos@662
 | 
   214  | 
      typename ResAbGraph::template NodeMap<bool> bfs_reached(res_ab_graph);
  | 
| 
athos@662
 | 
   215  | 
      typename ResAbGraph::template NodeMap<typename ResAbGraph::Edge> 
  | 
| 
athos@659
 | 
   216  | 
	bfs_pred(res_ab_graph); 
  | 
| 
athos@662
 | 
   217  | 
      NullMap<typename ResAbGraph::Node, int> bfs_dist_dummy;
  | 
| 
athos@671
 | 
   218  | 
      //Teszt celbol:
  | 
| 
athos@671
 | 
   219  | 
      //BfsIterator<ResAbGraph, typename ResAbGraph::template NodeMap<bool> > 
  | 
| 
athos@671
 | 
   220  | 
      //izebize(res_ab_graph, bfs_reached);
  | 
| 
athos@659
 | 
   221  | 
      //We want to run bfs-es (more) on this graph 'res_ab_graph'
  | 
| 
athos@671
 | 
   222  | 
      Bfs < const ResAbGraph , 
  | 
| 
athos@662
 | 
   223  | 
	typename ResAbGraph::template NodeMap<bool>, 
  | 
| 
athos@662
 | 
   224  | 
	typename ResAbGraph::template NodeMap<typename ResAbGraph::Edge>,
  | 
| 
athos@659
 | 
   225  | 
	NullMap<typename ResAbGraph::Node, int> > 
  | 
| 
athos@659
 | 
   226  | 
	bfs(res_ab_graph, bfs_reached, bfs_pred, bfs_dist_dummy);
  | 
| 
athos@662
 | 
   227  | 
      /*This is what Marci wants for a bfs
  | 
| 
athos@662
 | 
   228  | 
	template <typename Graph, 
  | 
| 
athos@662
 | 
   229  | 
	    typename ReachedMap=typename Graph::template NodeMap<bool>, 
  | 
| 
athos@662
 | 
   230  | 
	    typename PredMap
  | 
| 
athos@662
 | 
   231  | 
	    =typename Graph::template NodeMap<typename Graph::Edge>, 
  | 
| 
athos@662
 | 
   232  | 
	    typename DistMap=typename Graph::template NodeMap<int> > 
  | 
| 
athos@662
 | 
   233  | 
	    class Bfs : public BfsIterator<Graph, ReachedMap> {
 | 
| 
athos@662
 | 
   234  | 
  | 
| 
athos@662
 | 
   235  | 
       */
  | 
| 
athos@610
 | 
   236  | 
      
  | 
| 
athos@661
 | 
   237  | 
      ModCostMap mod_cost(res_graph, cost, potential);
  | 
| 
athos@610
 | 
   238  | 
  | 
| 
athos@661
 | 
   239  | 
      Dijkstra<ResGraph, ModCostMap> dijkstra(res_graph, mod_cost);
  | 
| 
athos@610
 | 
   240  | 
  | 
| 
athos@671
 | 
   241  | 
      //We will use the number of the nodes of the graph often
  | 
| 
athos@671
 | 
   242  | 
      int number_of_nodes = graph.nodeNum();
  | 
| 
athos@633
 | 
   243  | 
  | 
| 
athos@635
 | 
   244  | 
      while (max_excess > 0){
 | 
| 
athos@635
 | 
   245  | 
  | 
| 
athos@657
 | 
   246  | 
	//Reset delta if still too big
  | 
| 
athos@657
 | 
   247  | 
	if (8*number_of_nodes*max_excess <= delta){
 | 
| 
athos@657
 | 
   248  | 
	  delta = max_excess;
  | 
| 
athos@657
 | 
   249  | 
	  
  | 
| 
athos@657
 | 
   250  | 
	}
  | 
| 
athos@657
 | 
   251  | 
  | 
| 
athos@645
 | 
   252  | 
	/*
  | 
| 
athos@645
 | 
   253  | 
	 * Beginning of the delta scaling phase 
  | 
| 
athos@645
 | 
   254  | 
	*/
  | 
| 
athos@635
 | 
   255  | 
	//Merge and stuff
  | 
| 
athos@657
 | 
   256  | 
	{
 | 
| 
athos@657
 | 
   257  | 
	  SupplyDemand buf=8*number_of_nodes*delta;
  | 
| 
athos@662
 | 
   258  | 
	  typename std::list<Edge>::iterator i = nonabundant_arcs.begin();
  | 
| 
athos@657
 | 
   259  | 
	  while ( i != nonabundant_arcs.end() ){
 | 
| 
athos@671
 | 
   260  | 
	    if (flow[*i]>=buf){
 | 
| 
athos@671
 | 
   261  | 
	      Node a = abundant_components.find(res_graph.head(*i));
  | 
| 
athos@671
 | 
   262  | 
	      Node b = abundant_components.find(res_graph.tail(*i));
  | 
| 
athos@657
 | 
   263  | 
	      //Merge
  | 
| 
athos@657
 | 
   264  | 
	      if (a != b){
 | 
| 
athos@657
 | 
   265  | 
		abundant_components.join(a,b);
  | 
| 
athos@659
 | 
   266  | 
		//We want to push the smaller
  | 
| 
athos@659
 | 
   267  | 
		//Which has greater absolut value excess/deficit
  | 
| 
athos@659
 | 
   268  | 
		Node root=(abs(excess_deficit[a])>abs(excess_deficit[b]))?a:b;
  | 
| 
athos@659
 | 
   269  | 
		//Which is the other
  | 
| 
athos@659
 | 
   270  | 
		Node non_root = ( a == root ) ? b : a ;
  | 
| 
athos@659
 | 
   271  | 
		abundant_components.makeRep(root);
  | 
| 
athos@659
 | 
   272  | 
		SupplyDemand qty_to_augment = abs(excess_deficit[non_root]); 
  | 
| 
athos@659
 | 
   273  | 
		//Push the positive value
  | 
| 
athos@659
 | 
   274  | 
		if (excess_deficit[non_root] < 0)
  | 
| 
athos@659
 | 
   275  | 
		  swap(root, non_root);
  | 
| 
athos@659
 | 
   276  | 
		//If the non_root node has excess/deficit at all
  | 
| 
athos@659
 | 
   277  | 
		if (qty_to_augment>0){
 | 
| 
athos@659
 | 
   278  | 
		  //Find path and augment
  | 
| 
athos@671
 | 
   279  | 
		  bfs.run(typename AbundantGraph::Node(non_root));
  | 
| 
athos@659
 | 
   280  | 
		  //root should be reached
  | 
| 
athos@659
 | 
   281  | 
		  
  | 
| 
athos@659
 | 
   282  | 
		  //Augmenting on the found path
  | 
| 
athos@659
 | 
   283  | 
		  Node n=root;
  | 
| 
athos@659
 | 
   284  | 
		  ResGraphEdge e;
  | 
| 
athos@659
 | 
   285  | 
		  while (n!=non_root){
 | 
| 
athos@671
 | 
   286  | 
		    e = bfs_pred[n];
  | 
| 
athos@659
 | 
   287  | 
		    n = res_graph.tail(e);
  | 
| 
athos@659
 | 
   288  | 
		    res_graph.augment(e,qty_to_augment);
  | 
| 
athos@659
 | 
   289  | 
		  }
  | 
| 
athos@659
 | 
   290  | 
	  
  | 
| 
athos@659
 | 
   291  | 
		  //We know that non_root had positive excess
  | 
| 
athos@671
 | 
   292  | 
		  excess_nodes.set(non_root,
  | 
| 
athos@671
 | 
   293  | 
				   excess_nodes[non_root] - qty_to_augment);
  | 
| 
athos@659
 | 
   294  | 
		  //But what about root node
  | 
| 
athos@659
 | 
   295  | 
		  //It might have been positive and so became larger
  | 
| 
athos@659
 | 
   296  | 
		  if (excess_deficit[root]>0){
 | 
| 
athos@671
 | 
   297  | 
		    excess_nodes.set(root, 
  | 
| 
athos@671
 | 
   298  | 
				     excess_nodes[root] + qty_to_augment);
  | 
| 
athos@659
 | 
   299  | 
		  }
  | 
| 
athos@659
 | 
   300  | 
		  else{
 | 
| 
athos@659
 | 
   301  | 
		    //Or negative but not turned into positive
  | 
| 
athos@671
 | 
   302  | 
		    deficit_nodes.set(root, 
  | 
| 
athos@671
 | 
   303  | 
				      deficit_nodes[root] - qty_to_augment);
  | 
| 
athos@659
 | 
   304  | 
		  }
  | 
| 
athos@659
 | 
   305  | 
  | 
| 
athos@659
 | 
   306  | 
		  //Update the excess_deficit map
  | 
| 
athos@659
 | 
   307  | 
		  excess_deficit[non_root] -= qty_to_augment;
  | 
| 
athos@659
 | 
   308  | 
		  excess_deficit[root] += qty_to_augment;
  | 
| 
athos@659
 | 
   309  | 
  | 
| 
athos@659
 | 
   310  | 
		  
  | 
| 
athos@659
 | 
   311  | 
		}
  | 
| 
athos@657
 | 
   312  | 
	      }
  | 
| 
athos@657
 | 
   313  | 
	      //What happens to i?
  | 
| 
athos@659
 | 
   314  | 
	      //Marci and Zsolt says I shouldn't do such things
  | 
| 
athos@659
 | 
   315  | 
	      nonabundant_arcs.erase(i++);
  | 
| 
athos@671
 | 
   316  | 
	      abundant_arcs[*i] = true;
  | 
| 
athos@657
 | 
   317  | 
	    }
  | 
| 
athos@657
 | 
   318  | 
	    else
  | 
| 
athos@657
 | 
   319  | 
	      ++i;
  | 
| 
athos@657
 | 
   320  | 
	  }
  | 
| 
athos@657
 | 
   321  | 
	}
  | 
| 
athos@657
 | 
   322  | 
  | 
| 
athos@635
 | 
   323  | 
  | 
| 
athos@635
 | 
   324  | 
	Node s = excess_nodes.top(); 
  | 
| 
athos@672
 | 
   325  | 
	max_excess = excess_nodes[s];
  | 
| 
athos@635
 | 
   326  | 
	Node t = deficit_nodes.top(); 
  | 
| 
athos@659
 | 
   327  | 
	if (max_excess < deficit_nodes[t]){
 | 
| 
athos@659
 | 
   328  | 
	  max_excess = deficit_nodes[t];
  | 
| 
athos@635
 | 
   329  | 
	}
  | 
| 
athos@635
 | 
   330  | 
  | 
| 
athos@635
 | 
   331  | 
  | 
| 
athos@662
 | 
   332  | 
	while(max_excess > (number_of_nodes-1)*delta/number_of_nodes){
 | 
| 
athos@659
 | 
   333  | 
	  
  | 
| 
athos@635
 | 
   334  | 
	  
  | 
| 
athos@635
 | 
   335  | 
	  //s es t valasztasa
  | 
| 
athos@659
 | 
   336  | 
	  
  | 
| 
athos@635
 | 
   337  | 
	  //Dijkstra part	
  | 
| 
athos@635
 | 
   338  | 
	  dijkstra.run(s);
  | 
| 
athos@659
 | 
   339  | 
	  
  | 
| 
athos@635
 | 
   340  | 
	  /*We know from theory that t can be reached
  | 
| 
athos@635
 | 
   341  | 
	  if (!dijkstra.reached(t)){
 | 
| 
athos@635
 | 
   342  | 
	    //There are no k paths from s to t
  | 
| 
athos@635
 | 
   343  | 
	    break;
  | 
| 
athos@635
 | 
   344  | 
	  };
  | 
| 
athos@635
 | 
   345  | 
	  */
  | 
| 
athos@635
 | 
   346  | 
	  
  | 
| 
athos@635
 | 
   347  | 
	  //We have to change the potential
  | 
| 
athos@661
 | 
   348  | 
	  FOR_EACH_LOC(typename ResGraph::NodeIt, n, res_graph){
 | 
| 
athos@635
 | 
   349  | 
	    potential[n] += dijkstra.distMap()[n];
  | 
| 
athos@635
 | 
   350  | 
	  }
  | 
| 
athos@635
 | 
   351  | 
  | 
| 
athos@635
 | 
   352  | 
  | 
| 
athos@635
 | 
   353  | 
	  //Augmenting on the sortest path
  | 
| 
athos@635
 | 
   354  | 
	  Node n=t;
  | 
| 
athos@635
 | 
   355  | 
	  ResGraphEdge e;
  | 
| 
athos@635
 | 
   356  | 
	  while (n!=s){
 | 
| 
athos@635
 | 
   357  | 
	    e = dijkstra.pred(n);
  | 
| 
athos@635
 | 
   358  | 
	    n = dijkstra.predNode(n);
  | 
| 
athos@635
 | 
   359  | 
	    res_graph.augment(e,delta);
  | 
| 
athos@635
 | 
   360  | 
	    /*
  | 
| 
athos@661
 | 
   361  | 
	    //Let's update the total cost
  | 
| 
athos@635
 | 
   362  | 
	    if (res_graph.forward(e))
  | 
| 
athos@661
 | 
   363  | 
	      total_cost += cost[e];
  | 
| 
athos@635
 | 
   364  | 
	    else 
  | 
| 
athos@661
 | 
   365  | 
	      total_cost -= cost[e];	    
  | 
| 
athos@635
 | 
   366  | 
	    */
  | 
| 
athos@635
 | 
   367  | 
	  }
  | 
| 
athos@659
 | 
   368  | 
	  
  | 
| 
athos@659
 | 
   369  | 
	  //Update the excess_deficit map
  | 
| 
athos@659
 | 
   370  | 
	  excess_deficit[s] -= delta;
  | 
| 
athos@659
 | 
   371  | 
	  excess_deficit[t] += delta;
  | 
| 
athos@659
 | 
   372  | 
	  
  | 
| 
athos@635
 | 
   373  | 
  | 
| 
athos@635
 | 
   374  | 
	  //Update the excess_nodes heap
  | 
| 
athos@672
 | 
   375  | 
	  if (delta > excess_nodes[s]){
 | 
| 
athos@635
 | 
   376  | 
	    if (delta > excess_nodes[s])
  | 
| 
athos@635
 | 
   377  | 
	      deficit_nodes.push(s,delta - excess_nodes[s]);
  | 
| 
athos@635
 | 
   378  | 
	    excess_nodes.pop();
  | 
| 
athos@635
 | 
   379  | 
	    
  | 
| 
athos@635
 | 
   380  | 
	  } 
  | 
| 
athos@635
 | 
   381  | 
	  else{
 | 
| 
athos@671
 | 
   382  | 
	    excess_nodes.set(s, excess_nodes[s] - delta);
  | 
| 
athos@635
 | 
   383  | 
	  }
  | 
| 
athos@635
 | 
   384  | 
	  //Update the deficit_nodes heap
  | 
| 
athos@672
 | 
   385  | 
	  if (delta > deficit_nodes[t]){
 | 
| 
athos@635
 | 
   386  | 
	    if (delta > deficit_nodes[t])
  | 
| 
athos@635
 | 
   387  | 
	      excess_nodes.push(t,delta - deficit_nodes[t]);
  | 
| 
athos@635
 | 
   388  | 
	    deficit_nodes.pop();
  | 
| 
athos@635
 | 
   389  | 
	    
  | 
| 
athos@635
 | 
   390  | 
	  } 
  | 
| 
athos@635
 | 
   391  | 
	  else{
 | 
| 
athos@671
 | 
   392  | 
	    deficit_nodes.set(t, deficit_nodes[t] - delta);
  | 
| 
athos@635
 | 
   393  | 
	  }
  | 
| 
athos@635
 | 
   394  | 
	  //Dijkstra part ends here
  | 
| 
athos@659
 | 
   395  | 
	  
  | 
| 
athos@659
 | 
   396  | 
	  //Choose s and t again
  | 
| 
athos@659
 | 
   397  | 
	  s = excess_nodes.top(); 
  | 
| 
athos@659
 | 
   398  | 
	  max_excess = excess_nodes[s];
  | 
| 
athos@659
 | 
   399  | 
	  t = deficit_nodes.top(); 
  | 
| 
athos@659
 | 
   400  | 
	  if (max_excess < deficit_nodes[t]){
 | 
| 
athos@659
 | 
   401  | 
	    max_excess = deficit_nodes[t];
  | 
| 
athos@659
 | 
   402  | 
	  }
  | 
| 
athos@659
 | 
   403  | 
  | 
| 
athos@633
 | 
   404  | 
	}
  | 
| 
athos@633
 | 
   405  | 
  | 
| 
athos@633
 | 
   406  | 
	/*
  | 
| 
athos@635
 | 
   407  | 
	 * End of the delta scaling phase 
  | 
| 
athos@635
 | 
   408  | 
	*/
  | 
| 
athos@633
 | 
   409  | 
  | 
| 
athos@635
 | 
   410  | 
	//Whatever this means
  | 
| 
athos@635
 | 
   411  | 
	delta = delta / 2;
  | 
| 
athos@635
 | 
   412  | 
  | 
| 
athos@635
 | 
   413  | 
	/*This is not necessary here
  | 
| 
athos@635
 | 
   414  | 
	//Update the max_excess
  | 
| 
athos@635
 | 
   415  | 
	max_excess = 0;
  | 
| 
athos@659
 | 
   416  | 
	FOR_EACH_LOC(typename Graph::NodeIt, n, graph){
 | 
| 
athos@635
 | 
   417  | 
	  if (max_excess < excess_deficit[n]){
 | 
| 
athos@635
 | 
   418  | 
	    max_excess = excess_deficit[n];
  | 
| 
athos@610
 | 
   419  | 
	  }
  | 
| 
athos@610
 | 
   420  | 
	}
  | 
| 
athos@633
 | 
   421  | 
	*/
  | 
| 
athos@657
 | 
   422  | 
  | 
| 
athos@610
 | 
   423  | 
	  
  | 
| 
athos@635
 | 
   424  | 
      }//while(max_excess > 0)
  | 
| 
athos@610
 | 
   425  | 
      
  | 
| 
athos@610
 | 
   426  | 
  | 
| 
athos@671
 | 
   427  | 
      //return i;
  | 
| 
athos@610
 | 
   428  | 
    }
  | 
| 
athos@610
 | 
   429  | 
  | 
| 
athos@610
 | 
   430  | 
  | 
| 
athos@610
 | 
   431  | 
  | 
| 
athos@610
 | 
   432  | 
  | 
| 
athos@661
 | 
   433  | 
    ///This function gives back the total cost of the found paths.
  | 
| 
athos@610
 | 
   434  | 
    ///Assumes that \c run() has been run and nothing changed since then.
  | 
| 
athos@661
 | 
   435  | 
    Cost totalCost(){
 | 
| 
athos@661
 | 
   436  | 
      return total_cost;
  | 
| 
athos@610
 | 
   437  | 
    }
  | 
| 
athos@610
 | 
   438  | 
  | 
| 
athos@610
 | 
   439  | 
    ///Returns a const reference to the EdgeMap \c flow. \pre \ref run() must
  | 
| 
athos@610
 | 
   440  | 
    ///be called before using this function.
  | 
| 
athos@662
 | 
   441  | 
    const FlowMap &getFlow() const { return flow;}
 | 
| 
athos@610
 | 
   442  | 
  | 
| 
athos@610
 | 
   443  | 
  ///Returns a const reference to the NodeMap \c potential (the dual solution).
  | 
| 
athos@610
 | 
   444  | 
    /// \pre \ref run() must be called before using this function.
  | 
| 
athos@662
 | 
   445  | 
    const PotentialMap &getPotential() const { return potential;}
 | 
| 
athos@610
 | 
   446  | 
  | 
| 
athos@610
 | 
   447  | 
    ///This function checks, whether the given solution is optimal
  | 
| 
athos@610
 | 
   448  | 
    ///Running after a \c run() should return with true
  | 
| 
athos@672
 | 
   449  | 
    ///In this "state of the art" this only checks optimality, doesn't bother with feasibility
  | 
| 
athos@610
 | 
   450  | 
    ///
  | 
| 
athos@610
 | 
   451  | 
    ///\todo Is this OK here?
  | 
| 
athos@610
 | 
   452  | 
    bool checkComplementarySlackness(){
 | 
| 
athos@661
 | 
   453  | 
      Cost mod_pot;
  | 
| 
athos@661
 | 
   454  | 
      Cost fl_e;
  | 
| 
athos@659
 | 
   455  | 
      FOR_EACH_LOC(typename Graph::EdgeIt, e, graph){
 | 
| 
athos@610
 | 
   456  | 
	//C^{\Pi}_{i,j}
 | 
| 
athos@661
 | 
   457  | 
	mod_pot = cost[e]-potential[graph.head(e)]+potential[graph.tail(e)];
  | 
| 
athos@610
 | 
   458  | 
	fl_e = flow[e];
  | 
| 
athos@610
 | 
   459  | 
	//	std::cout << fl_e << std::endl;
  | 
| 
athos@672
 | 
   460  | 
	if (mod_pot > 0 && fl_e != 0)
  | 
| 
athos@672
 | 
   461  | 
	  return false;
  | 
| 
athos@672
 | 
   462  | 
  | 
| 
athos@610
 | 
   463  | 
      }
  | 
| 
athos@610
 | 
   464  | 
      return true;
  | 
| 
athos@610
 | 
   465  | 
    }
  | 
| 
athos@672
 | 
   466  | 
  | 
| 
athos@672
 | 
   467  | 
    /*
  | 
| 
athos@672
 | 
   468  | 
    //For testing purposes only
  | 
| 
athos@672
 | 
   469  | 
    //Lists the node_properties
  | 
| 
athos@672
 | 
   470  | 
    void write_property_vector(const SupplyDemandMap& a,
  | 
| 
athos@672
 | 
   471  | 
			       char* prop_name="property"){
 | 
| 
athos@672
 | 
   472  | 
      FOR_EACH_LOC(typename Graph::NodeIt, i, graph){
 | 
| 
athos@672
 | 
   473  | 
	cout<<"Node id.: "<<graph.id(i)<<", "<<prop_name<<" value: "<<a[i]<<endl;
  | 
| 
athos@672
 | 
   474  | 
      }
  | 
| 
athos@672
 | 
   475  | 
      cout<<endl;
  | 
| 
athos@672
 | 
   476  | 
    }
  | 
| 
athos@672
 | 
   477  | 
    */
  | 
| 
athos@672
 | 
   478  | 
    bool checkFeasibility(){
 | 
| 
athos@672
 | 
   479  | 
      SupplyDemandMap supdem(graph);
  | 
| 
athos@672
 | 
   480  | 
      FOR_EACH_LOC(typename Graph::EdgeIt, e, graph){
 | 
| 
athos@672
 | 
   481  | 
  | 
| 
athos@672
 | 
   482  | 
	if ( flow[e] < 0){
 | 
| 
athos@672
 | 
   483  | 
  | 
| 
athos@672
 | 
   484  | 
	  return false;
  | 
| 
athos@672
 | 
   485  | 
	}
  | 
| 
athos@672
 | 
   486  | 
	supdem[graph.tail(e)] += flow[e];
  | 
| 
athos@672
 | 
   487  | 
	supdem[graph.head(e)] -= flow[e];
  | 
| 
athos@672
 | 
   488  | 
      }
  | 
| 
athos@672
 | 
   489  | 
      //write_property_vector(supdem, "supdem");
  | 
| 
athos@672
 | 
   490  | 
      //write_property_vector(supply_demand, "supply_demand");
  | 
| 
athos@672
 | 
   491  | 
  | 
| 
athos@672
 | 
   492  | 
      FOR_EACH_LOC(typename Graph::NodeIt, n, graph){
 | 
| 
athos@672
 | 
   493  | 
  | 
| 
athos@672
 | 
   494  | 
	if ( supdem[n] != supply_demand[n]){
 | 
| 
athos@672
 | 
   495  | 
	  //cout<<"Node id.: "<<graph.id(n)<<" : "<<supdem[n]<<", should be: "<<supply_demand[n]<<endl;
  | 
| 
athos@672
 | 
   496  | 
	  return false;
  | 
| 
athos@672
 | 
   497  | 
	}
  | 
| 
athos@672
 | 
   498  | 
      }
  | 
| 
athos@672
 | 
   499  | 
  | 
| 
athos@672
 | 
   500  | 
      return true;
  | 
| 
athos@672
 | 
   501  | 
    }
  | 
| 
athos@672
 | 
   502  | 
  | 
| 
athos@672
 | 
   503  | 
    bool checkOptimality(){
 | 
| 
athos@672
 | 
   504  | 
      return checkFeasibility() && checkComplementarySlackness();
  | 
| 
athos@672
 | 
   505  | 
    }
  | 
| 
athos@610
 | 
   506  | 
  | 
| 
athos@633
 | 
   507  | 
  }; //class MinCostFlow
  | 
| 
athos@610
 | 
   508  | 
  | 
| 
athos@610
 | 
   509  | 
  ///@}
  | 
| 
athos@610
 | 
   510  | 
  | 
| 
athos@610
 | 
   511  | 
} //namespace hugo
  | 
| 
athos@610
 | 
   512  | 
  | 
| 
athos@610
 | 
   513  | 
#endif //HUGO_MINCOSTFLOW_H
  |