| 
ladanyi@666
 | 
     1  | 
/*!
  | 
| 
ladanyi@666
 | 
     2  | 
  | 
| 
ladanyi@1638
 | 
     3  | 
\page graphs Graphs
  | 
| 
ladanyi@666
 | 
     4  | 
  | 
| 
alpar@921
 | 
     5  | 
The primary data structures of LEMON are the graph classes. They all
  | 
| 
alpar@756
 | 
     6  | 
provide a node list - edge list interface, i.e. they have
  | 
| 
alpar@756
 | 
     7  | 
functionalities to list the nodes and the edges of the graph as well
  | 
| 
athos@1168
 | 
     8  | 
as  incoming and outgoing edges of a given node. 
  | 
| 
alpar@756
 | 
     9  | 
  | 
| 
alpar@756
 | 
    10  | 
  | 
| 
alpar@873
 | 
    11  | 
Each graph should meet the
  | 
| 
klao@959
 | 
    12  | 
\ref lemon::concept::StaticGraph "StaticGraph" concept.
  | 
| 
alpar@873
 | 
    13  | 
This concept does not
  | 
| 
athos@1168
 | 
    14  | 
make it possible to change the graph (i.e. it is not possible to add
  | 
| 
alpar@756
 | 
    15  | 
or delete edges or nodes). Most of the graph algorithms will run on
  | 
| 
alpar@756
 | 
    16  | 
these graphs.
  | 
| 
alpar@756
 | 
    17  | 
  | 
| 
alpar@873
 | 
    18  | 
The graphs meeting the
  | 
| 
klao@959
 | 
    19  | 
\ref lemon::concept::ExtendableGraph "ExtendableGraph"
  | 
| 
alpar@873
 | 
    20  | 
concept allow node and
  | 
| 
athos@1168
 | 
    21  | 
edge addition. You can also "clear" such a graph (i.e. erase all edges and nodes ).
  | 
| 
alpar@756
 | 
    22  | 
  | 
| 
alpar@873
 | 
    23  | 
In case of graphs meeting the full feature
  | 
| 
klao@959
 | 
    24  | 
\ref lemon::concept::ErasableGraph "ErasableGraph"
  | 
| 
alpar@873
 | 
    25  | 
concept
  | 
| 
athos@1168
 | 
    26  | 
you can also erase individual edges and nodes in arbitrary order.
  | 
| 
alpar@756
 | 
    27  | 
  | 
| 
alpar@756
 | 
    28  | 
The implemented graph structures are the following.
  | 
| 
alpar@921
 | 
    29  | 
\li \ref lemon::ListGraph "ListGraph" is the most versatile graph class. It meets
  | 
| 
klao@959
 | 
    30  | 
the \ref lemon::concept::ErasableGraph "ErasableGraph" concept
  | 
| 
athos@1168
 | 
    31  | 
and it also has some convenient extra features.
  | 
| 
alpar@921
 | 
    32  | 
\li \ref lemon::SmartGraph "SmartGraph" is a more memory
  | 
| 
alpar@921
 | 
    33  | 
efficient version of \ref lemon::ListGraph "ListGraph". The
  | 
| 
athos@1168
 | 
    34  | 
price of this is that it only meets the
  | 
| 
klao@959
 | 
    35  | 
\ref lemon::concept::ExtendableGraph "ExtendableGraph" concept,
  | 
| 
alpar@756
 | 
    36  | 
so you cannot delete individual edges or nodes.
  | 
| 
alpar@921
 | 
    37  | 
\li \ref lemon::FullGraph "FullGraph"
  | 
| 
alpar@1200
 | 
    38  | 
implements a complete graph. It is a
  | 
| 
alpar@1200
 | 
    39  | 
\ref lemon::concept::StaticGraph "StaticGraph", so you cannot
  | 
| 
alpar@756
 | 
    40  | 
change the number of nodes once it is constructed. It is extremely memory
  | 
| 
alpar@756
 | 
    41  | 
efficient: it uses constant amount of memory independently from the number of
  | 
| 
alpar@1043
 | 
    42  | 
the nodes of the graph. Of course, the size of the \ref maps-page "NodeMap"'s and
  | 
| 
alpar@1043
 | 
    43  | 
\ref maps-page "EdgeMap"'s will depend on the number of nodes.
  | 
| 
alpar@756
 | 
    44  | 
  | 
| 
alpar@921
 | 
    45  | 
\li \ref lemon::NodeSet "NodeSet" implements a graph with no edges. This class
  | 
| 
alpar@921
 | 
    46  | 
can be used as a base class of \ref lemon::EdgeSet "EdgeSet".
  | 
| 
alpar@921
 | 
    47  | 
\li \ref lemon::EdgeSet "EdgeSet" can be used to create a new graph on
  | 
| 
alpar@873
 | 
    48  | 
the node set of another graph. The base graph can be an arbitrary graph and it
  | 
| 
alpar@921
 | 
    49  | 
is possible to attach several \ref lemon::EdgeSet "EdgeSet"'s to a base graph.
  | 
| 
alpar@756
 | 
    50  | 
  | 
| 
alpar@756
 | 
    51  | 
\todo Don't we need SmartNodeSet and SmartEdgeSet?
  | 
| 
alpar@756
 | 
    52  | 
\todo Some cross-refs are wrong.
  | 
| 
alpar@756
 | 
    53  | 
  | 
| 
athos@1168
 | 
    54  | 
The graph structures themselves can not store data attached
  | 
| 
alpar@756
 | 
    55  | 
to the edges and nodes. However they all provide
  | 
| 
alpar@1043
 | 
    56  | 
\ref maps-page "map classes"
  | 
| 
alpar@756
 | 
    57  | 
to dynamically attach data the to graph components.
  | 
| 
alpar@756
 | 
    58  | 
  | 
| 
alpar@921
 | 
    59  | 
The following program demonstrates the basic features of LEMON's graph
  | 
| 
ladanyi@666
 | 
    60  | 
structures.
  | 
| 
ladanyi@666
 | 
    61  | 
  | 
| 
ladanyi@666
 | 
    62  | 
\code
  | 
| 
ladanyi@666
 | 
    63  | 
#include <iostream>
  | 
| 
alpar@921
 | 
    64  | 
#include <lemon/list_graph.h>
  | 
| 
ladanyi@666
 | 
    65  | 
  | 
| 
alpar@921
 | 
    66  | 
using namespace lemon;
  | 
| 
ladanyi@666
 | 
    67  | 
  | 
| 
ladanyi@666
 | 
    68  | 
int main()
  | 
| 
ladanyi@666
 | 
    69  | 
{
 | 
| 
ladanyi@666
 | 
    70  | 
  typedef ListGraph Graph;
  | 
| 
ladanyi@666
 | 
    71  | 
\endcode
  | 
| 
ladanyi@666
 | 
    72  | 
  | 
| 
alpar@921
 | 
    73  | 
ListGraph is one of LEMON's graph classes. It is based on linked lists,
  | 
| 
ladanyi@666
 | 
    74  | 
therefore iterating throuh its edges and nodes is fast.
  | 
| 
ladanyi@666
 | 
    75  | 
  | 
| 
ladanyi@666
 | 
    76  | 
\code
  | 
| 
ladanyi@666
 | 
    77  | 
  typedef Graph::Edge Edge;
  | 
| 
ladanyi@666
 | 
    78  | 
  typedef Graph::InEdgeIt InEdgeIt;
  | 
| 
ladanyi@666
 | 
    79  | 
  typedef Graph::OutEdgeIt OutEdgeIt;
  | 
| 
ladanyi@666
 | 
    80  | 
  typedef Graph::EdgeIt EdgeIt;
  | 
| 
ladanyi@666
 | 
    81  | 
  typedef Graph::Node Node;
  | 
| 
ladanyi@666
 | 
    82  | 
  typedef Graph::NodeIt NodeIt;
  | 
| 
ladanyi@666
 | 
    83  | 
  | 
| 
ladanyi@666
 | 
    84  | 
  Graph g;
  | 
| 
ladanyi@666
 | 
    85  | 
  
  | 
| 
ladanyi@666
 | 
    86  | 
  for (int i = 0; i < 3; i++)
  | 
| 
ladanyi@666
 | 
    87  | 
    g.addNode();
  | 
| 
ladanyi@666
 | 
    88  | 
  
  | 
| 
ladanyi@875
 | 
    89  | 
  for (NodeIt i(g); i!=INVALID; ++i)
  | 
| 
ladanyi@875
 | 
    90  | 
    for (NodeIt j(g); j!=INVALID; ++j)
  | 
| 
ladanyi@666
 | 
    91  | 
      if (i != j) g.addEdge(i, j);
  | 
| 
ladanyi@666
 | 
    92  | 
\endcode
  | 
| 
ladanyi@666
 | 
    93  | 
  | 
| 
athos@1168
 | 
    94  | 
After some convenient typedefs we create a graph and add three nodes to it.
  | 
| 
athos@1168
 | 
    95  | 
Then we add edges to it to form a complete graph.
  | 
| 
ladanyi@666
 | 
    96  | 
  | 
| 
ladanyi@666
 | 
    97  | 
\code
  | 
| 
ladanyi@666
 | 
    98  | 
  std::cout << "Nodes:";
  | 
| 
ladanyi@875
 | 
    99  | 
  for (NodeIt i(g); i!=INVALID; ++i)
  | 
| 
ladanyi@666
 | 
   100  | 
    std::cout << " " << g.id(i);
  | 
| 
ladanyi@666
 | 
   101  | 
  std::cout << std::endl;
  | 
| 
ladanyi@666
 | 
   102  | 
\endcode
  | 
| 
ladanyi@666
 | 
   103  | 
  | 
| 
ladanyi@666
 | 
   104  | 
Here we iterate through all nodes of the graph. We use a constructor of the
  | 
| 
ladanyi@875
 | 
   105  | 
node iterator to initialize it to the first node. The operator++ is used to
  | 
| 
ladanyi@875
 | 
   106  | 
step to the next node. Using operator++ on the iterator pointing to the last
  | 
| 
ladanyi@875
 | 
   107  | 
node invalidates the iterator i.e. sets its value to
  | 
| 
alpar@921
 | 
   108  | 
\ref lemon::INVALID "INVALID". This is what we exploit in the stop condition.
  | 
| 
ladanyi@666
 | 
   109  | 
  | 
| 
ladanyi@875
 | 
   110  | 
The previous code fragment prints out the following:
  | 
| 
ladanyi@666
 | 
   111  | 
  | 
| 
ladanyi@666
 | 
   112  | 
\code
  | 
| 
ladanyi@666
 | 
   113  | 
Nodes: 2 1 0
  | 
| 
ladanyi@666
 | 
   114  | 
\endcode
  | 
| 
ladanyi@666
 | 
   115  | 
  | 
| 
ladanyi@666
 | 
   116  | 
\code
  | 
| 
ladanyi@666
 | 
   117  | 
  std::cout << "Edges:";
  | 
| 
ladanyi@875
 | 
   118  | 
  for (EdgeIt i(g); i!=INVALID; ++i)
  | 
| 
alpar@986
 | 
   119  | 
    std::cout << " (" << g.id(g.source(i)) << "," << g.id(g.target(i)) << ")";
 | 
| 
ladanyi@666
 | 
   120  | 
  std::cout << std::endl;
  | 
| 
ladanyi@666
 | 
   121  | 
\endcode
  | 
| 
ladanyi@666
 | 
   122  | 
  | 
| 
ladanyi@666
 | 
   123  | 
\code
  | 
| 
ladanyi@666
 | 
   124  | 
Edges: (0,2) (1,2) (0,1) (2,1) (1,0) (2,0)
  | 
| 
ladanyi@666
 | 
   125  | 
\endcode
  | 
| 
ladanyi@666
 | 
   126  | 
  | 
| 
athos@1168
 | 
   127  | 
We can also iterate through all edges of the graph very similarly. The 
  | 
| 
athos@1168
 | 
   128  | 
\c target and
  | 
| 
athos@1168
 | 
   129  | 
\c source member functions can be used to access the endpoints of an edge.
  | 
| 
ladanyi@666
 | 
   130  | 
  | 
| 
ladanyi@666
 | 
   131  | 
\code
  | 
| 
ladanyi@666
 | 
   132  | 
  NodeIt first_node(g);
  | 
| 
ladanyi@666
 | 
   133  | 
  | 
| 
ladanyi@666
 | 
   134  | 
  std::cout << "Out-edges of node " << g.id(first_node) << ":";
  | 
| 
ladanyi@875
 | 
   135  | 
  for (OutEdgeIt i(g, first_node); i!=INVALID; ++i)
  | 
| 
alpar@986
 | 
   136  | 
    std::cout << " (" << g.id(g.source(i)) << "," << g.id(g.target(i)) << ")"; 
 | 
| 
ladanyi@666
 | 
   137  | 
  std::cout << std::endl;
  | 
| 
ladanyi@666
 | 
   138  | 
  | 
| 
ladanyi@666
 | 
   139  | 
  std::cout << "In-edges of node " << g.id(first_node) << ":";
  | 
| 
ladanyi@875
 | 
   140  | 
  for (InEdgeIt i(g, first_node); i!=INVALID; ++i)
  | 
| 
alpar@986
 | 
   141  | 
    std::cout << " (" << g.id(g.source(i)) << "," << g.id(g.target(i)) << ")"; 
 | 
| 
ladanyi@666
 | 
   142  | 
  std::cout << std::endl;
  | 
| 
ladanyi@666
 | 
   143  | 
\endcode
  | 
| 
ladanyi@666
 | 
   144  | 
  | 
| 
ladanyi@666
 | 
   145  | 
\code
  | 
| 
ladanyi@666
 | 
   146  | 
Out-edges of node 2: (2,0) (2,1)
  | 
| 
ladanyi@666
 | 
   147  | 
In-edges of node 2: (0,2) (1,2)
  | 
| 
ladanyi@666
 | 
   148  | 
\endcode
  | 
| 
ladanyi@666
 | 
   149  | 
  | 
| 
ladanyi@666
 | 
   150  | 
We can also iterate through the in and out-edges of a node. In the above
  | 
| 
ladanyi@666
 | 
   151  | 
example we print out the in and out-edges of the first node of the graph.
  | 
| 
ladanyi@666
 | 
   152  | 
  | 
| 
ladanyi@666
 | 
   153  | 
\code
  | 
| 
ladanyi@666
 | 
   154  | 
  Graph::EdgeMap<int> m(g);
  | 
| 
ladanyi@666
 | 
   155  | 
  | 
| 
ladanyi@875
 | 
   156  | 
  for (EdgeIt e(g); e!=INVALID; ++e)
  | 
| 
ladanyi@666
 | 
   157  | 
    m.set(e, 10 - g.id(e));
  | 
| 
ladanyi@666
 | 
   158  | 
  
  | 
| 
ladanyi@666
 | 
   159  | 
  std::cout << "Id Edge  Value" << std::endl;
  | 
| 
ladanyi@875
 | 
   160  | 
  for (EdgeIt e(g); e!=INVALID; ++e)
  | 
| 
alpar@986
 | 
   161  | 
    std::cout << g.id(e) << "  (" << g.id(g.source(e)) << "," << g.id(g.target(e))
 | 
| 
ladanyi@666
 | 
   162  | 
      << ") " << m[e] << std::endl;
  | 
| 
ladanyi@666
 | 
   163  | 
\endcode
  | 
| 
ladanyi@666
 | 
   164  | 
  | 
| 
ladanyi@666
 | 
   165  | 
\code
  | 
| 
ladanyi@666
 | 
   166  | 
Id Edge  Value
  | 
| 
ladanyi@666
 | 
   167  | 
4  (0,2) 6
  | 
| 
ladanyi@666
 | 
   168  | 
2  (1,2) 8
  | 
| 
ladanyi@666
 | 
   169  | 
5  (0,1) 5
  | 
| 
ladanyi@666
 | 
   170  | 
0  (2,1) 10
  | 
| 
ladanyi@666
 | 
   171  | 
3  (1,0) 7
  | 
| 
ladanyi@666
 | 
   172  | 
1  (2,0) 9
  | 
| 
ladanyi@666
 | 
   173  | 
\endcode
  | 
| 
ladanyi@666
 | 
   174  | 
  | 
| 
alpar@873
 | 
   175  | 
As we mentioned above, graphs are not containers rather
  | 
| 
alpar@921
 | 
   176  | 
incidence structures which are iterable in many ways. LEMON introduces
  | 
| 
ladanyi@666
 | 
   177  | 
concepts that allow us to attach containers to graphs. These containers are
  | 
| 
ladanyi@666
 | 
   178  | 
called maps.
  | 
| 
ladanyi@666
 | 
   179  | 
  | 
| 
athos@1168
 | 
   180  | 
In the example above we create an EdgeMap which assigns an integer value to all
  | 
| 
ladanyi@666
 | 
   181  | 
edges of the graph. We use the set member function of the map to write values
  | 
| 
ladanyi@666
 | 
   182  | 
into the map and the operator[] to retrieve them.
  | 
| 
ladanyi@666
 | 
   183  | 
  | 
| 
ladanyi@666
 | 
   184  | 
Here we used the maps provided by the ListGraph class, but you can also write
  | 
| 
alpar@1043
 | 
   185  | 
your own maps. You can read more about using maps \ref maps-page "here".
  | 
| 
ladanyi@666
 | 
   186  | 
  | 
| 
ladanyi@666
 | 
   187  | 
*/
  |