| 
alpar@906
 | 
     1  | 
/* -*- C++ -*-
  | 
| 
alpar@921
 | 
     2  | 
 * src/lemon/min_cost_flow.h - Part of LEMON, a generic C++ optimization library
  | 
| 
alpar@906
 | 
     3  | 
 *
  | 
| 
alpar@906
 | 
     4  | 
 * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
  | 
| 
alpar@906
 | 
     5  | 
 * (Egervary Combinatorial Optimization Research Group, EGRES).
  | 
| 
alpar@906
 | 
     6  | 
 *
  | 
| 
alpar@906
 | 
     7  | 
 * Permission to use, modify and distribute this software is granted
  | 
| 
alpar@906
 | 
     8  | 
 * provided that this copyright notice appears in all copies. For
  | 
| 
alpar@906
 | 
     9  | 
 * precise terms see the accompanying LICENSE file.
  | 
| 
alpar@906
 | 
    10  | 
 *
  | 
| 
alpar@906
 | 
    11  | 
 * This software is provided "AS IS" with no warranty of any kind,
  | 
| 
alpar@906
 | 
    12  | 
 * express or implied, and with no claim as to its suitability for any
  | 
| 
alpar@906
 | 
    13  | 
 * purpose.
  | 
| 
alpar@906
 | 
    14  | 
 *
  | 
| 
alpar@906
 | 
    15  | 
 */
  | 
| 
alpar@906
 | 
    16  | 
  | 
| 
alpar@921
 | 
    17  | 
#ifndef LEMON_MIN_COST_FLOW_H
  | 
| 
alpar@921
 | 
    18  | 
#define LEMON_MIN_COST_FLOW_H
  | 
| 
alpar@899
 | 
    19  | 
  | 
| 
alpar@899
 | 
    20  | 
///\ingroup flowalgs
  | 
| 
alpar@899
 | 
    21  | 
///\file
  | 
| 
alpar@899
 | 
    22  | 
///\brief An algorithm for finding a flow of value \c k (for small values of \c k) having minimal total cost 
  | 
| 
alpar@899
 | 
    23  | 
  | 
| 
alpar@899
 | 
    24  | 
  | 
| 
alpar@921
 | 
    25  | 
#include <lemon/dijkstra.h>
  | 
| 
alpar@921
 | 
    26  | 
#include <lemon/graph_wrapper.h>
  | 
| 
alpar@921
 | 
    27  | 
#include <lemon/maps.h>
  | 
| 
alpar@899
 | 
    28  | 
#include <vector>
  | 
| 
alpar@899
 | 
    29  | 
  | 
| 
alpar@921
 | 
    30  | 
namespace lemon {
 | 
| 
alpar@899
 | 
    31  | 
  | 
| 
alpar@899
 | 
    32  | 
/// \addtogroup flowalgs
  | 
| 
alpar@899
 | 
    33  | 
/// @{
 | 
| 
alpar@899
 | 
    34  | 
  | 
| 
alpar@899
 | 
    35  | 
  ///\brief Implementation of an algorithm for finding a flow of value \c k 
  | 
| 
alpar@899
 | 
    36  | 
  ///(for small values of \c k) having minimal total cost between 2 nodes 
  | 
| 
alpar@899
 | 
    37  | 
  /// 
  | 
| 
alpar@899
 | 
    38  | 
  ///
  | 
| 
alpar@921
 | 
    39  | 
  /// The class \ref lemon::MinCostFlow "MinCostFlow" implements
  | 
| 
alpar@899
 | 
    40  | 
  /// an algorithm for finding a flow of value \c k 
  | 
| 
alpar@899
 | 
    41  | 
  /// having minimal total cost 
  | 
| 
alpar@899
 | 
    42  | 
  /// from a given source node to a given target node in an
  | 
| 
alpar@899
 | 
    43  | 
  /// edge-weighted directed graph. To this end, 
  | 
| 
alpar@899
 | 
    44  | 
  /// the edge-capacities and edge-weitghs have to be nonnegative. 
  | 
| 
alpar@899
 | 
    45  | 
  /// The edge-capacities should be integers, but the edge-weights can be 
  | 
| 
alpar@899
 | 
    46  | 
  /// integers, reals or of other comparable numeric type.
  | 
| 
alpar@899
 | 
    47  | 
  /// This algorithm is intended to use only for small values of \c k, 
  | 
| 
alpar@899
 | 
    48  | 
  /// since it is only polynomial in k, 
  | 
| 
alpar@899
 | 
    49  | 
  /// not in the length of k (which is log k). 
  | 
| 
alpar@899
 | 
    50  | 
  /// In order to find the minimum cost flow of value \c k it 
  | 
| 
alpar@899
 | 
    51  | 
  /// finds the minimum cost flow of value \c i for every 
  | 
| 
alpar@899
 | 
    52  | 
  /// \c i between 0 and \c k. 
  | 
| 
alpar@899
 | 
    53  | 
  ///
  | 
| 
alpar@899
 | 
    54  | 
  ///\param Graph The directed graph type the algorithm runs on.
  | 
| 
alpar@899
 | 
    55  | 
  ///\param LengthMap The type of the length map.
  | 
| 
alpar@899
 | 
    56  | 
  ///\param CapacityMap The capacity map type.
  | 
| 
alpar@899
 | 
    57  | 
  ///
  | 
| 
alpar@899
 | 
    58  | 
  ///\author Attila Bernath
  | 
| 
alpar@899
 | 
    59  | 
  template <typename Graph, typename LengthMap, typename CapacityMap>
  | 
| 
alpar@899
 | 
    60  | 
  class MinCostFlow {
 | 
| 
alpar@899
 | 
    61  | 
  | 
| 
alpar@987
 | 
    62  | 
    typedef typename LengthMap::Value Length;
  | 
| 
alpar@899
 | 
    63  | 
  | 
| 
alpar@899
 | 
    64  | 
    //Warning: this should be integer type
  | 
| 
alpar@987
 | 
    65  | 
    typedef typename CapacityMap::Value Capacity;
  | 
| 
alpar@899
 | 
    66  | 
    
  | 
| 
alpar@899
 | 
    67  | 
    typedef typename Graph::Node Node;
  | 
| 
alpar@899
 | 
    68  | 
    typedef typename Graph::NodeIt NodeIt;
  | 
| 
alpar@899
 | 
    69  | 
    typedef typename Graph::Edge Edge;
  | 
| 
alpar@899
 | 
    70  | 
    typedef typename Graph::OutEdgeIt OutEdgeIt;
  | 
| 
alpar@899
 | 
    71  | 
    typedef typename Graph::template EdgeMap<int> EdgeIntMap;
  | 
| 
alpar@899
 | 
    72  | 
  | 
| 
marci@910
 | 
    73  | 
    typedef ResGraphWrapper<const Graph,int,CapacityMap,EdgeIntMap> ResGW;
  | 
| 
marci@910
 | 
    74  | 
    typedef typename ResGW::Edge ResGraphEdge;
  | 
| 
alpar@899
 | 
    75  | 
  | 
| 
marci@941
 | 
    76  | 
  protected:
  | 
| 
marci@941
 | 
    77  | 
  | 
| 
marci@941
 | 
    78  | 
    const Graph& g;
  | 
| 
marci@941
 | 
    79  | 
    const LengthMap& length;
  | 
| 
marci@941
 | 
    80  | 
    const CapacityMap& capacity;
  | 
| 
marci@941
 | 
    81  | 
  | 
| 
marci@941
 | 
    82  | 
    EdgeIntMap flow; 
  | 
| 
marci@941
 | 
    83  | 
    typedef typename Graph::template NodeMap<Length> PotentialMap;
  | 
| 
marci@941
 | 
    84  | 
    PotentialMap potential;
  | 
| 
marci@941
 | 
    85  | 
  | 
| 
marci@941
 | 
    86  | 
    Node s;
  | 
| 
marci@941
 | 
    87  | 
    Node t;
  | 
| 
marci@941
 | 
    88  | 
    
  | 
| 
marci@941
 | 
    89  | 
    Length total_length;
  | 
| 
marci@941
 | 
    90  | 
  | 
| 
alpar@899
 | 
    91  | 
    class ModLengthMap {   
 | 
| 
alpar@899
 | 
    92  | 
      typedef typename Graph::template NodeMap<Length> NodeMap;
  | 
| 
marci@941
 | 
    93  | 
      const ResGW& g;
  | 
| 
marci@941
 | 
    94  | 
      const LengthMap &length;
  | 
| 
alpar@899
 | 
    95  | 
      const NodeMap &pot;
  | 
| 
alpar@899
 | 
    96  | 
    public :
  | 
| 
alpar@987
 | 
    97  | 
      typedef typename LengthMap::Key Key;
  | 
| 
alpar@987
 | 
    98  | 
      typedef typename LengthMap::Value Value;
  | 
| 
marci@941
 | 
    99  | 
  | 
| 
marci@941
 | 
   100  | 
      ModLengthMap(const ResGW& _g, 
  | 
| 
marci@941
 | 
   101  | 
		   const LengthMap &_length, const NodeMap &_pot) : 
  | 
| 
marci@941
 | 
   102  | 
	g(_g), /*rev(_rev),*/ length(_length), pot(_pot) { }
 | 
| 
alpar@899
 | 
   103  | 
	
  | 
| 
alpar@987
 | 
   104  | 
      Value operator[](typename ResGW::Edge e) const {     
 | 
| 
marci@941
 | 
   105  | 
	if (g.forward(e))
  | 
| 
alpar@986
 | 
   106  | 
	  return  length[e]-(pot[g.target(e)]-pot[g.source(e)]);   
  | 
| 
alpar@899
 | 
   107  | 
	else
  | 
| 
alpar@986
 | 
   108  | 
	  return -length[e]-(pot[g.target(e)]-pot[g.source(e)]);   
  | 
| 
alpar@899
 | 
   109  | 
      }     
  | 
| 
alpar@899
 | 
   110  | 
	
  | 
| 
marci@941
 | 
   111  | 
    }; //ModLengthMap
  | 
| 
alpar@899
 | 
   112  | 
  | 
| 
marci@941
 | 
   113  | 
    ResGW res_graph;
  | 
| 
marci@941
 | 
   114  | 
    ModLengthMap mod_length;
  | 
| 
marci@941
 | 
   115  | 
    Dijkstra<ResGW, ModLengthMap> dijkstra;
  | 
| 
alpar@899
 | 
   116  | 
  | 
| 
alpar@899
 | 
   117  | 
  public :
  | 
| 
alpar@899
 | 
   118  | 
  | 
| 
marci@941
 | 
   119  | 
    /*! \brief The constructor of the class.
  | 
| 
alpar@899
 | 
   120  | 
    
  | 
| 
marci@941
 | 
   121  | 
    \param _g The directed graph the algorithm runs on. 
  | 
| 
marci@941
 | 
   122  | 
    \param _length The length (weight or cost) of the edges. 
  | 
| 
marci@941
 | 
   123  | 
    \param _cap The capacity of the edges. 
  | 
| 
marci@941
 | 
   124  | 
    \param _s Source node.
  | 
| 
marci@941
 | 
   125  | 
    \param _t Target node.
  | 
| 
marci@941
 | 
   126  | 
    */
  | 
| 
marci@941
 | 
   127  | 
    MinCostFlow(Graph& _g, LengthMap& _length, CapacityMap& _cap, 
  | 
| 
marci@941
 | 
   128  | 
		Node _s, Node _t) : 
  | 
| 
marci@941
 | 
   129  | 
      g(_g), length(_length), capacity(_cap), flow(_g), potential(_g), 
  | 
| 
marci@941
 | 
   130  | 
      s(_s), t(_t), 
  | 
| 
marci@941
 | 
   131  | 
      res_graph(g, capacity, flow), 
  | 
| 
marci@941
 | 
   132  | 
      mod_length(res_graph, length, potential),
  | 
| 
marci@941
 | 
   133  | 
      dijkstra(res_graph, mod_length) { 
 | 
| 
marci@941
 | 
   134  | 
      reset();
  | 
| 
marci@941
 | 
   135  | 
      }
  | 
| 
alpar@899
 | 
   136  | 
  | 
| 
marci@941
 | 
   137  | 
    /*! Tries to augment the flow between s and t by 1.
  | 
| 
marci@941
 | 
   138  | 
      The return value shows if the augmentation is successful.
  | 
| 
marci@941
 | 
   139  | 
     */
  | 
| 
marci@941
 | 
   140  | 
    bool augment() {
 | 
| 
marci@941
 | 
   141  | 
      dijkstra.run(s);
  | 
| 
marci@941
 | 
   142  | 
      if (!dijkstra.reached(t)) {
 | 
| 
alpar@899
 | 
   143  | 
  | 
| 
marci@941
 | 
   144  | 
	//Unsuccessful augmentation.
  | 
| 
marci@941
 | 
   145  | 
	return false;
  | 
| 
marci@941
 | 
   146  | 
      } else {
 | 
| 
alpar@899
 | 
   147  | 
  | 
| 
marci@941
 | 
   148  | 
	//We have to change the potential
  | 
| 
marci@941
 | 
   149  | 
	for(typename ResGW::NodeIt n(res_graph); n!=INVALID; ++n)
  | 
| 
marci@1027
 | 
   150  | 
	  potential.set(n, potential[n]+dijkstra.distMap()[n]);
  | 
| 
alpar@899
 | 
   151  | 
	
  | 
| 
alpar@899
 | 
   152  | 
	//Augmenting on the sortest path
  | 
| 
alpar@899
 | 
   153  | 
	Node n=t;
  | 
| 
alpar@899
 | 
   154  | 
	ResGraphEdge e;
  | 
| 
alpar@899
 | 
   155  | 
	while (n!=s){
 | 
| 
alpar@899
 | 
   156  | 
	  e = dijkstra.pred(n);
  | 
| 
alpar@899
 | 
   157  | 
	  n = dijkstra.predNode(n);
  | 
| 
alpar@899
 | 
   158  | 
	  res_graph.augment(e,1);
  | 
| 
alpar@899
 | 
   159  | 
	  //Let's update the total length
  | 
| 
alpar@899
 | 
   160  | 
	  if (res_graph.forward(e))
  | 
| 
alpar@899
 | 
   161  | 
	    total_length += length[e];
  | 
| 
alpar@899
 | 
   162  | 
	  else 
  | 
| 
alpar@899
 | 
   163  | 
	    total_length -= length[e];	    
  | 
| 
alpar@899
 | 
   164  | 
	}
  | 
| 
alpar@899
 | 
   165  | 
  | 
| 
marci@941
 | 
   166  | 
	return true;
  | 
| 
alpar@899
 | 
   167  | 
      }
  | 
| 
marci@941
 | 
   168  | 
    }
  | 
| 
marci@941
 | 
   169  | 
    
  | 
| 
marci@941
 | 
   170  | 
    /*! \brief Runs the algorithm.
  | 
| 
marci@941
 | 
   171  | 
    
  | 
| 
marci@941
 | 
   172  | 
    Runs the algorithm.
  | 
| 
marci@941
 | 
   173  | 
    Returns k if there is a flow of value at least k from s to t.
  | 
| 
marci@941
 | 
   174  | 
    Otherwise it returns the maximum value of a flow from s to t.
  | 
| 
marci@941
 | 
   175  | 
    
  | 
| 
marci@941
 | 
   176  | 
    \param k The value of the flow we are looking for.
  | 
| 
marci@941
 | 
   177  | 
    
  | 
| 
marci@941
 | 
   178  | 
    \todo May be it does make sense to be able to start with a nonzero 
  | 
| 
marci@941
 | 
   179  | 
    feasible primal-dual solution pair as well.
  | 
| 
marci@941
 | 
   180  | 
    
  | 
| 
marci@941
 | 
   181  | 
    \todo If the actual flow value is bigger than k, then everything is 
  | 
| 
marci@941
 | 
   182  | 
    cleared and the algorithm starts from zero flow. Is it a good approach?
  | 
| 
marci@941
 | 
   183  | 
    */
  | 
| 
marci@941
 | 
   184  | 
    int run(int k) {
 | 
| 
marci@941
 | 
   185  | 
      if (flowValue()>k) reset();
  | 
| 
marci@941
 | 
   186  | 
      while (flowValue()<k && augment()) { }
 | 
| 
marci@941
 | 
   187  | 
      return flowValue();
  | 
| 
marci@941
 | 
   188  | 
    }
  | 
| 
alpar@899
 | 
   189  | 
  | 
| 
marci@941
 | 
   190  | 
    /*! \brief The class is reset to zero flow and potential.
  | 
| 
marci@941
 | 
   191  | 
      The class is reset to zero flow and potential.
  | 
| 
marci@941
 | 
   192  | 
     */
  | 
| 
marci@941
 | 
   193  | 
    void reset() {
 | 
| 
marci@941
 | 
   194  | 
      total_length=0;
  | 
| 
marci@941
 | 
   195  | 
      for (typename Graph::EdgeIt e(g); e!=INVALID; ++e) flow.set(e, 0);
  | 
| 
marci@941
 | 
   196  | 
      for (typename Graph::NodeIt n(g); n!=INVALID; ++n) potential.set(n, 0);  
  | 
| 
marci@941
 | 
   197  | 
    }
  | 
| 
marci@941
 | 
   198  | 
  | 
| 
marci@941
 | 
   199  | 
    /*! Returns the value of the actual flow. 
  | 
| 
marci@941
 | 
   200  | 
     */
  | 
| 
marci@941
 | 
   201  | 
    int flowValue() const {
 | 
| 
marci@941
 | 
   202  | 
      int i=0;
  | 
| 
marci@941
 | 
   203  | 
      for (typename Graph::OutEdgeIt e(g, s); e!=INVALID; ++e) i+=flow[e];
  | 
| 
marci@941
 | 
   204  | 
      for (typename Graph::InEdgeIt e(g, s); e!=INVALID; ++e) i-=flow[e];
  | 
| 
alpar@899
 | 
   205  | 
      return i;
  | 
| 
alpar@899
 | 
   206  | 
    }
  | 
| 
alpar@899
 | 
   207  | 
  | 
| 
marci@941
 | 
   208  | 
    /// Total weight of the found flow.
  | 
| 
alpar@899
 | 
   209  | 
  | 
| 
marci@941
 | 
   210  | 
    /// This function gives back the total weight of the found flow.
  | 
| 
alpar@899
 | 
   211  | 
    Length totalLength(){
 | 
| 
alpar@899
 | 
   212  | 
      return total_length;
  | 
| 
alpar@899
 | 
   213  | 
    }
  | 
| 
alpar@899
 | 
   214  | 
  | 
| 
alpar@899
 | 
   215  | 
    ///Returns a const reference to the EdgeMap \c flow. 
  | 
| 
alpar@899
 | 
   216  | 
  | 
| 
alpar@899
 | 
   217  | 
    ///Returns a const reference to the EdgeMap \c flow. 
  | 
| 
alpar@899
 | 
   218  | 
    const EdgeIntMap &getFlow() const { return flow;}
 | 
| 
alpar@899
 | 
   219  | 
  | 
| 
marci@941
 | 
   220  | 
    /*! \brief Returns a const reference to the NodeMap \c potential (the dual solution).
  | 
| 
alpar@899
 | 
   221  | 
  | 
| 
marci@941
 | 
   222  | 
    Returns a const reference to the NodeMap \c potential (the dual solution).
  | 
| 
marci@941
 | 
   223  | 
    */
  | 
| 
alpar@899
 | 
   224  | 
    const PotentialMap &getPotential() const { return potential;}
 | 
| 
alpar@899
 | 
   225  | 
  | 
| 
marci@941
 | 
   226  | 
    /*! \brief Checking the complementary slackness optimality criteria.
  | 
| 
alpar@899
 | 
   227  | 
  | 
| 
marci@941
 | 
   228  | 
    This function checks, whether the given flow and potential 
  | 
| 
marci@941
 | 
   229  | 
    satisfiy the complementary slackness cnditions (i.e. these are optimal).
  | 
| 
marci@941
 | 
   230  | 
    This function only checks optimality, doesn't bother with feasibility.
  | 
| 
marci@941
 | 
   231  | 
    For testing purpose.
  | 
| 
marci@941
 | 
   232  | 
    */
  | 
| 
alpar@899
 | 
   233  | 
    bool checkComplementarySlackness(){
 | 
| 
alpar@899
 | 
   234  | 
      Length mod_pot;
  | 
| 
alpar@899
 | 
   235  | 
      Length fl_e;
  | 
| 
marci@941
 | 
   236  | 
        for(typename Graph::EdgeIt e(g); e!=INVALID; ++e) {
 | 
| 
alpar@899
 | 
   237  | 
	//C^{\Pi}_{i,j}
 | 
| 
alpar@986
 | 
   238  | 
	mod_pot = length[e]-potential[g.target(e)]+potential[g.source(e)];
  | 
| 
alpar@899
 | 
   239  | 
	fl_e = flow[e];
  | 
| 
alpar@899
 | 
   240  | 
	if (0<fl_e && fl_e<capacity[e]) {
 | 
| 
alpar@899
 | 
   241  | 
	  /// \todo better comparison is needed for real types, moreover, 
  | 
| 
alpar@899
 | 
   242  | 
	  /// this comparison here is superfluous.
  | 
| 
alpar@899
 | 
   243  | 
	  if (mod_pot != 0)
  | 
| 
alpar@899
 | 
   244  | 
	    return false;
  | 
| 
alpar@899
 | 
   245  | 
	} 
  | 
| 
alpar@899
 | 
   246  | 
	else {
 | 
| 
alpar@899
 | 
   247  | 
	  if (mod_pot > 0 && fl_e != 0)
  | 
| 
alpar@899
 | 
   248  | 
	    return false;
  | 
| 
alpar@899
 | 
   249  | 
	  if (mod_pot < 0 && fl_e != capacity[e])
  | 
| 
alpar@899
 | 
   250  | 
	    return false;
  | 
| 
alpar@899
 | 
   251  | 
	}
  | 
| 
alpar@899
 | 
   252  | 
      }
  | 
| 
alpar@899
 | 
   253  | 
      return true;
  | 
| 
alpar@899
 | 
   254  | 
    }
  | 
| 
alpar@899
 | 
   255  | 
    
  | 
| 
alpar@899
 | 
   256  | 
  }; //class MinCostFlow
  | 
| 
alpar@899
 | 
   257  | 
  | 
| 
alpar@899
 | 
   258  | 
  ///@}
  | 
| 
alpar@899
 | 
   259  | 
  | 
| 
alpar@921
 | 
   260  | 
} //namespace lemon
  | 
| 
alpar@899
 | 
   261  | 
  | 
| 
alpar@921
 | 
   262  | 
#endif //LEMON_MIN_COST_FLOW_H
  |