| 
     1 // -*- C++ -*-  | 
         | 
     2   | 
         | 
     3 //run gyorsan tudna adni a minmincutot a 2 fazis elejen , ne vegyuk be konstruktorba egy cutmapet?  | 
         | 
     4 //constzero jo igy?  | 
         | 
     5   | 
         | 
     6 //majd marci megmondja betegyem-e bfs-t meg resgraphot  | 
         | 
     7   | 
         | 
     8 //constzero helyett az kell hogy flow-e vagy csak preflow, ha flow akor csak  | 
         | 
     9 //excess[t]-t kell szmaolni  | 
         | 
    10   | 
         | 
    11 /*  | 
         | 
    12 Heuristics:   | 
         | 
    13  2 phase  | 
         | 
    14  gap  | 
         | 
    15  list 'level_list' on the nodes on level i implemented by hand  | 
         | 
    16  stack 'active' on the active nodes on level i implemented by hand  | 
         | 
    17  runs heuristic 'highest label' for H1*n relabels  | 
         | 
    18  runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label'  | 
         | 
    19    | 
         | 
    20 Parameters H0 and H1 are initialized to 20 and 10.  | 
         | 
    21   | 
         | 
    22 Constructors:  | 
         | 
    23   | 
         | 
    24 Preflow(Graph, Node, Node, CapMap, FlowMap, bool) : bool must be false if   | 
         | 
    25      FlowMap is not constant zero, and should be true if it is  | 
         | 
    26   | 
         | 
    27 Members:  | 
         | 
    28   | 
         | 
    29 void run()  | 
         | 
    30   | 
         | 
    31 T flowValue() : returns the value of a maximum flow  | 
         | 
    32   | 
         | 
    33 void minMinCut(CutMap& M) : sets M to the characteristic vector of the   | 
         | 
    34      minimum min cut. M should be a map of bools initialized to false.  | 
         | 
    35   | 
         | 
    36 void maxMinCut(CutMap& M) : sets M to the characteristic vector of the   | 
         | 
    37      maximum min cut. M should be a map of bools initialized to false.  | 
         | 
    38   | 
         | 
    39 void minCut(CutMap& M) : sets M to the characteristic vector of   | 
         | 
    40      a min cut. M should be a map of bools initialized to false.  | 
         | 
    41   | 
         | 
    42 FIXME reset  | 
         | 
    43   | 
         | 
    44 */  | 
         | 
    45   | 
         | 
    46 #ifndef HUGO_PREFLOW_H  | 
         | 
    47 #define HUGO_PREFLOW_H  | 
         | 
    48   | 
         | 
    49 #define H0 20  | 
         | 
    50 #define H1 1  | 
         | 
    51   | 
         | 
    52 #include <vector>  | 
         | 
    53 #include <queue>  | 
         | 
    54 #include <stack>  | 
         | 
    55   | 
         | 
    56 namespace hugo { | 
         | 
    57   | 
         | 
    58   template <typename Graph, typename T,   | 
         | 
    59 	    typename CapMap=typename Graph::template EdgeMap<T>,   | 
         | 
    60             typename FlowMap=typename Graph::template EdgeMap<T> >  | 
         | 
    61   class Preflow { | 
         | 
    62       | 
         | 
    63     typedef typename Graph::Node Node;  | 
         | 
    64     typedef typename Graph::Edge Edge;  | 
         | 
    65     typedef typename Graph::NodeIt NodeIt;  | 
         | 
    66     typedef typename Graph::OutEdgeIt OutEdgeIt;  | 
         | 
    67     typedef typename Graph::InEdgeIt InEdgeIt;  | 
         | 
    68       | 
         | 
    69     const Graph& G;  | 
         | 
    70     Node s;  | 
         | 
    71     Node t;  | 
         | 
    72     const CapMap& capacity;    | 
         | 
    73     FlowMap& flow;  | 
         | 
    74     T value;  | 
         | 
    75     bool constzero;  | 
         | 
    76     bool isflow;  | 
         | 
    77   | 
         | 
    78   public:  | 
         | 
    79     Preflow(Graph& _G, Node _s, Node _t, CapMap& _capacity,   | 
         | 
    80 	    FlowMap& _flow, bool _constzero, bool _isflow ) :  | 
         | 
    81       G(_G), s(_s), t(_t), capacity(_capacity), flow(_flow), constzero(_constzero), isflow(_isflow) {} | 
         | 
    82       | 
         | 
    83       | 
         | 
    84     void run() { | 
         | 
    85         | 
         | 
    86       value=0;                //for the subsequent runs  | 
         | 
    87   | 
         | 
    88       bool phase=0;        //phase 0 is the 1st phase, phase 1 is the 2nd  | 
         | 
    89       int n=G.nodeNum();   | 
         | 
    90       int heur0=(int)(H0*n);  //time while running 'bound decrease'   | 
         | 
    91       int heur1=(int)(H1*n);  //time while running 'highest label'  | 
         | 
    92       int heur=heur1;         //starting time interval (#of relabels)  | 
         | 
    93       bool what_heur=1;         | 
         | 
    94       /*  | 
         | 
    95 	what_heur is 0 in case 'bound decrease'   | 
         | 
    96 	and 1 in case 'highest label'  | 
         | 
    97       */  | 
         | 
    98       bool end=false;       | 
         | 
    99       /*  | 
         | 
   100 	Needed for 'bound decrease', 'true'  | 
         | 
   101 	means no active nodes are above bound b.  | 
         | 
   102       */  | 
         | 
   103       int relabel=0;  | 
         | 
   104       int k=n-2;  //bound on the highest level under n containing a node  | 
         | 
   105       int b=k;    //bound on the highest level under n of an active node  | 
         | 
   106         | 
         | 
   107       typename Graph::template NodeMap<int> level(G,n);        | 
         | 
   108       typename Graph::template NodeMap<T> excess(G);   | 
         | 
   109   | 
         | 
   110       std::vector<std::stack<Node> > active(n);  | 
         | 
   111       /*      std::vector<Node> active(n-1,INVALID);  | 
         | 
   112       typename Graph::template NodeMap<Node> next(G,INVALID);  | 
         | 
   113       //Stack of the active nodes in level i < n.  | 
         | 
   114       //We use it in both phases.*/  | 
         | 
   115   | 
         | 
   116       typename Graph::template NodeMap<Node> left(G,INVALID);  | 
         | 
   117       typename Graph::template NodeMap<Node> right(G,INVALID);  | 
         | 
   118       std::vector<Node> level_list(n,INVALID);  | 
         | 
   119       /*  | 
         | 
   120 	List of the nodes in level i<n.  | 
         | 
   121       */  | 
         | 
   122   | 
         | 
   123   | 
         | 
   124       if ( constzero ) { | 
         | 
   125        | 
         | 
   126 	/*Reverse_bfs from t, to find the starting level.*/  | 
         | 
   127 	level.set(t,0);  | 
         | 
   128 	std::queue<Node> bfs_queue;  | 
         | 
   129 	bfs_queue.push(t);  | 
         | 
   130 	  | 
         | 
   131 	while (!bfs_queue.empty()) { | 
         | 
   132 	    | 
         | 
   133 	  Node v=bfs_queue.front();	  | 
         | 
   134 	  bfs_queue.pop();  | 
         | 
   135 	  int l=level[v]+1;  | 
         | 
   136 	    | 
         | 
   137 	  InEdgeIt e;  | 
         | 
   138 	  for(G.first(e,v); G.valid(e); G.next(e)) { | 
         | 
   139 	    Node w=G.tail(e);  | 
         | 
   140 	    if ( level[w] == n && w != s ) { | 
         | 
   141 	      bfs_queue.push(w);  | 
         | 
   142 	      Node first=level_list[l];  | 
         | 
   143 	      if ( G.valid(first) ) left.set(first,w);  | 
         | 
   144 	      right.set(w,first);  | 
         | 
   145 	      level_list[l]=w;  | 
         | 
   146 	      level.set(w, l);  | 
         | 
   147 	    }  | 
         | 
   148 	  }  | 
         | 
   149 	}  | 
         | 
   150   | 
         | 
   151 	//the starting flow  | 
         | 
   152 	OutEdgeIt e;  | 
         | 
   153 	for(G.first(e,s); G.valid(e); G.next(e))   | 
         | 
   154 	{ | 
         | 
   155 	  T c=capacity[e];  | 
         | 
   156 	  if ( c == 0 ) continue;  | 
         | 
   157 	  Node w=G.head(e);  | 
         | 
   158 	  if ( level[w] < n ) {	   | 
         | 
   159 	    if ( excess[w] == 0 && w!=t ) active[level[w]].push(w);  | 
         | 
   160 	    flow.set(e, c);   | 
         | 
   161 	    excess.set(w, excess[w]+c);  | 
         | 
   162 	  }  | 
         | 
   163 	}  | 
         | 
   164       }  | 
         | 
   165       else   | 
         | 
   166       { | 
         | 
   167 	  | 
         | 
   168 	/*  | 
         | 
   169 	  Reverse_bfs from t in the residual graph,   | 
         | 
   170 	  to find the starting level.  | 
         | 
   171 	*/  | 
         | 
   172 	level.set(t,0);  | 
         | 
   173 	std::queue<Node> bfs_queue;  | 
         | 
   174 	bfs_queue.push(t);  | 
         | 
   175 	  | 
         | 
   176 	while (!bfs_queue.empty()) { | 
         | 
   177 	    | 
         | 
   178 	  Node v=bfs_queue.front();	  | 
         | 
   179 	  bfs_queue.pop();  | 
         | 
   180 	  int l=level[v]+1;  | 
         | 
   181 	    | 
         | 
   182 	  InEdgeIt e;  | 
         | 
   183 	  for(G.first(e,v); G.valid(e); G.next(e)) { | 
         | 
   184 	    if ( capacity[e] == flow[e] ) continue;  | 
         | 
   185 	    Node w=G.tail(e);  | 
         | 
   186 	    if ( level[w] == n && w != s ) { | 
         | 
   187 	      bfs_queue.push(w);  | 
         | 
   188 	      Node first=level_list[l];  | 
         | 
   189 	      if ( G.valid(first) ) left.set(first,w);  | 
         | 
   190 	      right.set(w,first);  | 
         | 
   191 	      level_list[l]=w;  | 
         | 
   192 	      level.set(w, l);  | 
         | 
   193 	    }  | 
         | 
   194 	  }  | 
         | 
   195 	      | 
         | 
   196 	  OutEdgeIt f;  | 
         | 
   197 	  for(G.first(f,v); G.valid(f); G.next(f)) { | 
         | 
   198 	    if ( 0 == flow[f] ) continue;  | 
         | 
   199 	    Node w=G.head(f);  | 
         | 
   200 	    if ( level[w] == n && w != s ) { | 
         | 
   201 	      bfs_queue.push(w);  | 
         | 
   202 	      Node first=level_list[l];  | 
         | 
   203 	      if ( G.valid(first) ) left.set(first,w);  | 
         | 
   204 	      right.set(w,first);  | 
         | 
   205 	      level_list[l]=w;  | 
         | 
   206 	      level.set(w, l);  | 
         | 
   207 	    }  | 
         | 
   208 	  }  | 
         | 
   209 	}  | 
         | 
   210         | 
         | 
   211 	  | 
         | 
   212 	/*  | 
         | 
   213 	  Counting the excess  | 
         | 
   214 	*/  | 
         | 
   215   | 
         | 
   216 	if ( !isflow ) { | 
         | 
   217 	  NodeIt v;  | 
         | 
   218 	  for(G.first(v); G.valid(v); G.next(v)) { | 
         | 
   219 	    T exc=0;  | 
         | 
   220 	      | 
         | 
   221 	    InEdgeIt e;  | 
         | 
   222 	    for(G.first(e,v); G.valid(e); G.next(e)) exc+=flow[e];  | 
         | 
   223 	    OutEdgeIt f;  | 
         | 
   224 	    for(G.first(f,v); G.valid(f); G.next(f)) exc-=flow[f];  | 
         | 
   225 	      | 
         | 
   226 	    excess.set(v,exc);	    | 
         | 
   227 	      | 
         | 
   228 	    //putting the active nodes into the stack  | 
         | 
   229 	    int lev=level[v];  | 
         | 
   230 	    if ( exc > 0 && lev < n && v != t ) active[lev].push(v);  | 
         | 
   231 	  }  | 
         | 
   232 	} else { | 
         | 
   233 	  T exc=0;  | 
         | 
   234 	      | 
         | 
   235 	  InEdgeIt e;  | 
         | 
   236 	  for(G.first(e,t); G.valid(e); G.next(e)) exc+=flow[e];  | 
         | 
   237 	  OutEdgeIt f;  | 
         | 
   238 	  for(G.first(f,t); G.valid(f); G.next(f)) exc-=flow[f];  | 
         | 
   239   | 
         | 
   240 	  excess.set(t,exc);	    | 
         | 
   241 	}  | 
         | 
   242   | 
         | 
   243   | 
         | 
   244 	//the starting flow  | 
         | 
   245 	OutEdgeIt e;  | 
         | 
   246 	for(G.first(e,s); G.valid(e); G.next(e))   | 
         | 
   247 	{ | 
         | 
   248 	  T rem=capacity[e]-flow[e];  | 
         | 
   249 	  if ( rem == 0 ) continue;  | 
         | 
   250 	  Node w=G.head(e);  | 
         | 
   251 	  if ( level[w] < n ) {	   | 
         | 
   252 	    if ( excess[w] == 0 && w!=t ) active[level[w]].push(w);  | 
         | 
   253 	    flow.set(e, capacity[e]);   | 
         | 
   254 	    excess.set(w, excess[w]+rem);  | 
         | 
   255 	  }  | 
         | 
   256 	}  | 
         | 
   257 	  | 
         | 
   258 	InEdgeIt f;  | 
         | 
   259 	for(G.first(f,s); G.valid(f); G.next(f))   | 
         | 
   260 	{ | 
         | 
   261 	  if ( flow[f] == 0 ) continue;  | 
         | 
   262 	  Node w=G.tail(f);  | 
         | 
   263 	  if ( level[w] < n ) {	   | 
         | 
   264 	    if ( excess[w] == 0 && w!=t ) active[level[w]].push(w);  | 
         | 
   265 	    excess.set(w, excess[w]+flow[f]);  | 
         | 
   266 	    flow.set(f, 0);   | 
         | 
   267 	  }  | 
         | 
   268 	}  | 
         | 
   269       }  | 
         | 
   270   | 
         | 
   271   | 
         | 
   272   | 
         | 
   273   | 
         | 
   274       /*   | 
         | 
   275 	 End of preprocessing   | 
         | 
   276       */  | 
         | 
   277   | 
         | 
   278   | 
         | 
   279   | 
         | 
   280       /*  | 
         | 
   281 	Push/relabel on the highest level active nodes.  | 
         | 
   282       */	  | 
         | 
   283       while ( true ) { | 
         | 
   284 	  | 
         | 
   285 	if ( b == 0 ) { | 
         | 
   286 	  if ( phase ) break;  | 
         | 
   287 	    | 
         | 
   288 	  if ( !what_heur && !end && k > 0 ) { | 
         | 
   289 	    b=k;  | 
         | 
   290 	    end=true;  | 
         | 
   291 	  } else { | 
         | 
   292 	    phase=1;  | 
         | 
   293 	    level.set(s,0);  | 
         | 
   294 	    std::queue<Node> bfs_queue;  | 
         | 
   295 	    bfs_queue.push(s);  | 
         | 
   296 	      | 
         | 
   297 	    while (!bfs_queue.empty()) { | 
         | 
   298 	        | 
         | 
   299 	      Node v=bfs_queue.front();	  | 
         | 
   300 	      bfs_queue.pop();  | 
         | 
   301 	      int l=level[v]+1;  | 
         | 
   302 	        | 
         | 
   303 	      InEdgeIt e;  | 
         | 
   304 	      for(G.first(e,v); G.valid(e); G.next(e)) { | 
         | 
   305 		if ( capacity[e] == flow[e] ) continue;  | 
         | 
   306 		Node u=G.tail(e);  | 
         | 
   307 		if ( level[u] >= n ) {  | 
         | 
   308 		  bfs_queue.push(u);  | 
         | 
   309 		  level.set(u, l);  | 
         | 
   310 		  if ( excess[u] > 0 ) active[l].push(u);  | 
         | 
   311 		}  | 
         | 
   312 	      }  | 
         | 
   313 	      | 
         | 
   314 	      OutEdgeIt f;  | 
         | 
   315 	      for(G.first(f,v); G.valid(f); G.next(f)) { | 
         | 
   316 		if ( 0 == flow[f] ) continue;  | 
         | 
   317 		Node u=G.head(f);  | 
         | 
   318 		if ( level[u] >= n ) {  | 
         | 
   319 		  bfs_queue.push(u);  | 
         | 
   320 		  level.set(u, l);  | 
         | 
   321 		  if ( excess[u] > 0 ) active[l].push(u);  | 
         | 
   322 		}  | 
         | 
   323 	      }  | 
         | 
   324 	    }  | 
         | 
   325 	    b=n-2;  | 
         | 
   326 	    }  | 
         | 
   327 	      | 
         | 
   328 	}  | 
         | 
   329 	    | 
         | 
   330   | 
         | 
   331 	///	    | 
         | 
   332 	if ( active[b].empty() ) --b;   | 
         | 
   333 	else { | 
         | 
   334 	  end=false;    | 
         | 
   335   | 
         | 
   336 	  Node w=active[b].top();  | 
         | 
   337 	  active[b].pop();  | 
         | 
   338 	  int lev=level[w];  | 
         | 
   339 	  T exc=excess[w];  | 
         | 
   340 	  int newlevel=n;       //bound on the next level of w  | 
         | 
   341 	    | 
         | 
   342 	  OutEdgeIt e;  | 
         | 
   343 	  for(G.first(e,w); G.valid(e); G.next(e)) { | 
         | 
   344 	      | 
         | 
   345 	    if ( flow[e] == capacity[e] ) continue;   | 
         | 
   346 	    Node v=G.head(e);              | 
         | 
   347 	    //e=wv	      | 
         | 
   348 	      | 
         | 
   349 	    if( lev > level[v] ) {       | 
         | 
   350 	      /*Push is allowed now*/  | 
         | 
   351 	        | 
         | 
   352 	      if ( excess[v]==0 && v!=t && v!=s ) { | 
         | 
   353 		int lev_v=level[v];  | 
         | 
   354 		active[lev_v].push(v);  | 
         | 
   355 	      }  | 
         | 
   356 	        | 
         | 
   357 	      T cap=capacity[e];  | 
         | 
   358 	      T flo=flow[e];  | 
         | 
   359 	      T remcap=cap-flo;  | 
         | 
   360 	        | 
         | 
   361 	      if ( remcap >= exc ) {        | 
         | 
   362 		/*A nonsaturating push.*/  | 
         | 
   363 		  | 
         | 
   364 		flow.set(e, flo+exc);  | 
         | 
   365 		excess.set(v, excess[v]+exc);  | 
         | 
   366 		exc=0;  | 
         | 
   367 		break;   | 
         | 
   368 		  | 
         | 
   369 	      } else {  | 
         | 
   370 		/*A saturating push.*/  | 
         | 
   371 		  | 
         | 
   372 		flow.set(e, cap);  | 
         | 
   373 		excess.set(v, excess[v]+remcap);  | 
         | 
   374 		exc-=remcap;  | 
         | 
   375 	      }  | 
         | 
   376 	    } else if ( newlevel > level[v] ){ | 
         | 
   377 	      newlevel = level[v];  | 
         | 
   378 	    }	      | 
         | 
   379 	      | 
         | 
   380 	  } //for out edges wv   | 
         | 
   381 	  | 
         | 
   382 	  | 
         | 
   383 	if ( exc > 0 ) {	 | 
         | 
   384 	  InEdgeIt e;  | 
         | 
   385 	  for(G.first(e,w); G.valid(e); G.next(e)) { | 
         | 
   386 	      | 
         | 
   387 	    if( flow[e] == 0 ) continue;   | 
         | 
   388 	    Node v=G.tail(e);    | 
         | 
   389 	    //e=vw  | 
         | 
   390 	      | 
         | 
   391 	    if( lev > level[v] ) {   | 
         | 
   392 	      /*Push is allowed now*/  | 
         | 
   393 	        | 
         | 
   394 	      if ( excess[v]==0 && v!=t && v!=s ) { | 
         | 
   395 		int lev_v=level[v];  | 
         | 
   396 		active[lev_v].push(v);  | 
         | 
   397 	      }  | 
         | 
   398 	        | 
         | 
   399 	      T flo=flow[e];  | 
         | 
   400 	        | 
         | 
   401 	      if ( flo >= exc ) {  | 
         | 
   402 		/*A nonsaturating push.*/  | 
         | 
   403 		  | 
         | 
   404 		flow.set(e, flo-exc);  | 
         | 
   405 		excess.set(v, excess[v]+exc);  | 
         | 
   406 		exc=0;  | 
         | 
   407 		break;   | 
         | 
   408 	      } else {                                                | 
         | 
   409 		/*A saturating push.*/  | 
         | 
   410 		  | 
         | 
   411 		excess.set(v, excess[v]+flo);  | 
         | 
   412 		exc-=flo;  | 
         | 
   413 		flow.set(e,0);  | 
         | 
   414 	      }    | 
         | 
   415 	    } else if ( newlevel > level[v] ) { | 
         | 
   416 	      newlevel = level[v];  | 
         | 
   417 	    }	      | 
         | 
   418 	  } //for in edges vw  | 
         | 
   419 	    | 
         | 
   420 	} // if w still has excess after the out edge for cycle  | 
         | 
   421 	  | 
         | 
   422 	excess.set(w, exc);  | 
         | 
   423 	///	push  | 
         | 
   424   | 
         | 
   425    | 
         | 
   426 	/*  | 
         | 
   427 	  Relabel  | 
         | 
   428 	*/  | 
         | 
   429 	  | 
         | 
   430   | 
         | 
   431 	if ( exc > 0 ) { | 
         | 
   432 	  //now 'lev' is the old level of w  | 
         | 
   433 	  | 
         | 
   434 	  if ( phase ) { | 
         | 
   435 	    level.set(w,++newlevel);  | 
         | 
   436 	    active[newlevel].push(w);  | 
         | 
   437 	    b=newlevel;  | 
         | 
   438 	  } else { | 
         | 
   439 	    //unlacing starts  | 
         | 
   440 	    Node right_n=right[w];  | 
         | 
   441 	    Node left_n=left[w];  | 
         | 
   442   | 
         | 
   443 	    if ( G.valid(right_n) ) { | 
         | 
   444 	      if ( G.valid(left_n) ) { | 
         | 
   445 		right.set(left_n, right_n);  | 
         | 
   446 		left.set(right_n, left_n);  | 
         | 
   447 	      } else { | 
         | 
   448 		level_list[lev]=right_n;     | 
         | 
   449 		left.set(right_n, INVALID);  | 
         | 
   450 	      }   | 
         | 
   451 	    } else { | 
         | 
   452 	      if ( G.valid(left_n) ) { | 
         | 
   453 		right.set(left_n, INVALID);  | 
         | 
   454 	      } else {  | 
         | 
   455 		level_list[lev]=INVALID;     | 
         | 
   456 	      }   | 
         | 
   457 	    }   | 
         | 
   458 	    //unlacing ends  | 
         | 
   459 		  | 
         | 
   460 	    if ( !G.valid(level_list[lev]) ) { | 
         | 
   461 	        | 
         | 
   462 	       //gapping starts  | 
         | 
   463 	      for (int i=lev; i!=k ; ) { | 
         | 
   464 		Node v=level_list[++i];  | 
         | 
   465 		while ( G.valid(v) ) { | 
         | 
   466 		  level.set(v,n);  | 
         | 
   467 		  v=right[v];  | 
         | 
   468 		}  | 
         | 
   469 		level_list[i]=INVALID;  | 
         | 
   470 		if ( !what_heur ) { | 
         | 
   471 		  while ( !active[i].empty() ) { | 
         | 
   472 		    active[i].pop();    //FIXME: ezt szebben kene  | 
         | 
   473 		  }  | 
         | 
   474 		}	       | 
         | 
   475 	      }  | 
         | 
   476   | 
         | 
   477 	      level.set(w,n);  | 
         | 
   478 	      b=lev-1;  | 
         | 
   479 	      k=b;  | 
         | 
   480 	      //gapping ends  | 
         | 
   481 	      | 
         | 
   482 	    } else { | 
         | 
   483 	        | 
         | 
   484 	      if ( newlevel == n ) level.set(w,n);   | 
         | 
   485 	      else { | 
         | 
   486 		level.set(w,++newlevel);  | 
         | 
   487 		active[newlevel].push(w);  | 
         | 
   488 		if ( what_heur ) b=newlevel;  | 
         | 
   489 		if ( k < newlevel ) ++k;      //now k=newlevel  | 
         | 
   490 		Node first=level_list[newlevel];  | 
         | 
   491 		if ( G.valid(first) ) left.set(first,w);  | 
         | 
   492 		right.set(w,first);  | 
         | 
   493 		left.set(w,INVALID);  | 
         | 
   494 		level_list[newlevel]=w;  | 
         | 
   495 	      }  | 
         | 
   496 	    }  | 
         | 
   497   | 
         | 
   498   | 
         | 
   499 	    ++relabel;   | 
         | 
   500 	    if ( relabel >= heur ) { | 
         | 
   501 	      relabel=0;  | 
         | 
   502 	      if ( what_heur ) { | 
         | 
   503 		what_heur=0;  | 
         | 
   504 		heur=heur0;  | 
         | 
   505 		end=false;  | 
         | 
   506 	      } else { | 
         | 
   507 		what_heur=1;  | 
         | 
   508 		heur=heur1;  | 
         | 
   509 		b=k;   | 
         | 
   510 	      }  | 
         | 
   511 	    }  | 
         | 
   512 	  } //phase 0  | 
         | 
   513 	    | 
         | 
   514 	    | 
         | 
   515 	} // if ( exc > 0 )  | 
         | 
   516 	    | 
         | 
   517 	  | 
         | 
   518 	}  // if stack[b] is nonempty  | 
         | 
   519 	  | 
         | 
   520       } // while(true)  | 
         | 
   521   | 
         | 
   522   | 
         | 
   523       value = excess[t];  | 
         | 
   524       /*Max flow value.*/  | 
         | 
   525        | 
         | 
   526     } //void run()  | 
         | 
   527   | 
         | 
   528   | 
         | 
   529   | 
         | 
   530   | 
         | 
   531   | 
         | 
   532     /*  | 
         | 
   533       Returns the maximum value of a flow.  | 
         | 
   534      */  | 
         | 
   535   | 
         | 
   536     T flowValue() { | 
         | 
   537       return value;  | 
         | 
   538     }  | 
         | 
   539   | 
         | 
   540   | 
         | 
   541     FlowMap Flow() { | 
         | 
   542       return flow;  | 
         | 
   543       }  | 
         | 
   544   | 
         | 
   545   | 
         | 
   546     void Flow(FlowMap& _flow ) { | 
         | 
   547       NodeIt v;  | 
         | 
   548       for(G.first(v) ; G.valid(v); G.next(v))  | 
         | 
   549 	_flow.set(v,flow[v]);  | 
         | 
   550     }  | 
         | 
   551   | 
         | 
   552   | 
         | 
   553   | 
         | 
   554     /*  | 
         | 
   555       Returns the minimum min cut, by a bfs from s in the residual graph.  | 
         | 
   556     */  | 
         | 
   557      | 
         | 
   558     template<typename _CutMap>  | 
         | 
   559     void minMinCut(_CutMap& M) { | 
         | 
   560       | 
         | 
   561       std::queue<Node> queue;  | 
         | 
   562         | 
         | 
   563       M.set(s,true);        | 
         | 
   564       queue.push(s);  | 
         | 
   565   | 
         | 
   566       while (!queue.empty()) { | 
         | 
   567         Node w=queue.front();  | 
         | 
   568 	queue.pop();  | 
         | 
   569   | 
         | 
   570 	OutEdgeIt e;  | 
         | 
   571 	for(G.first(e,w) ; G.valid(e); G.next(e)) { | 
         | 
   572 	  Node v=G.head(e);  | 
         | 
   573 	  if (!M[v] && flow[e] < capacity[e] ) { | 
         | 
   574 	    queue.push(v);  | 
         | 
   575 	    M.set(v, true);  | 
         | 
   576 	  }  | 
         | 
   577 	}   | 
         | 
   578   | 
         | 
   579 	InEdgeIt f;  | 
         | 
   580 	for(G.first(f,w) ; G.valid(f); G.next(f)) { | 
         | 
   581 	  Node v=G.tail(f);  | 
         | 
   582 	  if (!M[v] && flow[f] > 0 ) { | 
         | 
   583 	    queue.push(v);  | 
         | 
   584 	    M.set(v, true);  | 
         | 
   585 	  }  | 
         | 
   586 	}   | 
         | 
   587       }  | 
         | 
   588     }  | 
         | 
   589   | 
         | 
   590   | 
         | 
   591     | 
         | 
   592     /*  | 
         | 
   593       Returns the maximum min cut, by a reverse bfs   | 
         | 
   594       from t in the residual graph.  | 
         | 
   595     */  | 
         | 
   596       | 
         | 
   597     template<typename _CutMap>  | 
         | 
   598     void maxMinCut(_CutMap& M) { | 
         | 
   599       | 
         | 
   600       std::queue<Node> queue;  | 
         | 
   601         | 
         | 
   602       M.set(t,true);          | 
         | 
   603       queue.push(t);  | 
         | 
   604   | 
         | 
   605       while (!queue.empty()) { | 
         | 
   606         Node w=queue.front();  | 
         | 
   607 	queue.pop();  | 
         | 
   608   | 
         | 
   609   | 
         | 
   610 	InEdgeIt e;  | 
         | 
   611 	for(G.first(e,w) ; G.valid(e); G.next(e)) { | 
         | 
   612 	  Node v=G.tail(e);  | 
         | 
   613 	  if (!M[v] && flow[e] < capacity[e] ) { | 
         | 
   614 	    queue.push(v);  | 
         | 
   615 	    M.set(v, true);  | 
         | 
   616 	  }  | 
         | 
   617 	}  | 
         | 
   618 	  | 
         | 
   619 	OutEdgeIt f;  | 
         | 
   620 	for(G.first(f,w) ; G.valid(f); G.next(f)) { | 
         | 
   621 	  Node v=G.head(f);  | 
         | 
   622 	  if (!M[v] && flow[f] > 0 ) { | 
         | 
   623 	    queue.push(v);  | 
         | 
   624 	    M.set(v, true);  | 
         | 
   625 	  }  | 
         | 
   626 	}  | 
         | 
   627       }  | 
         | 
   628   | 
         | 
   629       NodeIt v;  | 
         | 
   630       for(G.first(v) ; G.valid(v); G.next(v)) { | 
         | 
   631 	M.set(v, !M[v]);  | 
         | 
   632       }  | 
         | 
   633   | 
         | 
   634     }  | 
         | 
   635   | 
         | 
   636   | 
         | 
   637   | 
         | 
   638     template<typename CutMap>  | 
         | 
   639     void minCut(CutMap& M) { | 
         | 
   640       minMinCut(M);  | 
         | 
   641     }  | 
         | 
   642   | 
         | 
   643       | 
         | 
   644     void resetTarget (Node _t) {t=_t;} | 
         | 
   645     void resetSource (Node _s) {s=_s;} | 
         | 
   646      | 
         | 
   647     void resetCap (CapMap _cap) {capacity=_cap;} | 
         | 
   648   | 
         | 
   649     void resetFlow (FlowMap _flow, bool _constzero) { | 
         | 
   650       flow=_flow;  | 
         | 
   651       constzero=_constzero;  | 
         | 
   652     }  | 
         | 
   653   | 
         | 
   654   | 
         | 
   655   | 
         | 
   656   };  | 
         | 
   657   | 
         | 
   658 } //namespace hugo  | 
         | 
   659   | 
         | 
   660 #endif //PREFLOW_H  | 
         | 
   661   | 
         | 
   662   | 
         | 
   663   | 
         | 
   664   |