| 
     1 // -*- C++ -*-  | 
         | 
     2 #ifndef HUGO_MAX_FLOW_H  | 
         | 
     3 #define HUGO_MAX_FLOW_H  | 
         | 
     4   | 
         | 
     5 ///\ingroup galgs  | 
         | 
     6 ///\file  | 
         | 
     7 ///\brief Maximum flow algorithm.  | 
         | 
     8   | 
         | 
     9 #define H0 20  | 
         | 
    10 #define H1 1  | 
         | 
    11   | 
         | 
    12 #include <vector>  | 
         | 
    13 #include <queue>  | 
         | 
    14 #include <stack>  | 
         | 
    15   | 
         | 
    16 #include <graph_wrapper.h>  | 
         | 
    17 #include <bfs_iterator.h>  | 
         | 
    18 #include <invalid.h>  | 
         | 
    19 #include <maps.h>  | 
         | 
    20 #include <for_each_macros.h>  | 
         | 
    21   | 
         | 
    22 /// \file  | 
         | 
    23 /// \brief Dimacs file format reader.  | 
         | 
    24   | 
         | 
    25 namespace hugo { | 
         | 
    26   | 
         | 
    27   /// \addtogroup galgs  | 
         | 
    28   /// @{ | 
         | 
    29   | 
         | 
    30   ///Maximum flow algorithms class.  | 
         | 
    31   | 
         | 
    32   ///This class provides various algorithms for finding a flow of  | 
         | 
    33   ///maximum value in a directed graph. The \e source node, the \e  | 
         | 
    34   ///target node, the \e capacity of the edges and the \e starting \e  | 
         | 
    35   ///flow value of the edges can be passed to the algorithm by the  | 
         | 
    36   ///constructor. It is possible to change these quantities using the  | 
         | 
    37   ///functions \ref resetSource, \ref resetTarget, \ref resetCap and  | 
         | 
    38   ///\ref resetFlow. Before any subsequent runs of any algorithm of  | 
         | 
    39   ///the class \ref resetFlow should be called, otherwise it will  | 
         | 
    40   ///start from a maximum flow.  | 
         | 
    41   | 
         | 
    42   ///After running an algorithm of the class, the maximum value of a  | 
         | 
    43   ///value can be obtained by calling \ref flowValue(). The minimum  | 
         | 
    44   ///value cut can be written into a \c node map of \c bools by  | 
         | 
    45   ///calling \ref minCut. (\ref minMinCut and \ref maxMinCut writes  | 
         | 
    46   ///the inclusionwise minimum and maximum of the minimum value  | 
         | 
    47   ///cuts, resp.)  | 
         | 
    48   | 
         | 
    49   ///\param Graph The undirected graph type the algorithm runs on.  | 
         | 
    50   ///\param Num The number type of the capacities and the flow values.  | 
         | 
    51   ///\param The type of the capacity map.  | 
         | 
    52   ///\param The type of the flow map.  | 
         | 
    53   | 
         | 
    54   ///\author Marton Makai, Jacint Szabo  | 
         | 
    55   template <typename Graph, typename Num,   | 
         | 
    56 	    typename CapMap=typename Graph::template EdgeMap<Num>,   | 
         | 
    57             typename FlowMap=typename Graph::template EdgeMap<Num> >  | 
         | 
    58   class MaxFlow { | 
         | 
    59       | 
         | 
    60     typedef typename Graph::Node Node;  | 
         | 
    61     typedef typename Graph::NodeIt NodeIt;  | 
         | 
    62     typedef typename Graph::OutEdgeIt OutEdgeIt;  | 
         | 
    63     typedef typename Graph::InEdgeIt InEdgeIt;  | 
         | 
    64   | 
         | 
    65     typedef typename std::vector<std::stack<Node> > VecStack;  | 
         | 
    66     typedef typename Graph::template NodeMap<Node> NNMap;  | 
         | 
    67     typedef typename std::vector<Node> VecNode;  | 
         | 
    68       | 
         | 
    69     typedef ResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;  | 
         | 
    70     typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt;  | 
         | 
    71     typedef typename ResGW::Edge ResGWEdge;  | 
         | 
    72     //typedef typename ResGW::template NodeMap<bool> ReachedMap;  //fixme  | 
         | 
    73     typedef typename Graph::template NodeMap<int> ReachedMap;  | 
         | 
    74       | 
         | 
    75     const Graph* g;  | 
         | 
    76     Node s;  | 
         | 
    77     Node t;  | 
         | 
    78     const CapMap* capacity;    | 
         | 
    79     FlowMap* flow;  | 
         | 
    80     int n;          //the number of nodes of G  | 
         | 
    81   | 
         | 
    82     //level works as a bool map in augmenting path algorithms and is  | 
         | 
    83     //used by bfs for storing reached information.  In preflow, it  | 
         | 
    84     //shows the levels of nodes.   | 
         | 
    85     ReachedMap level;  | 
         | 
    86       | 
         | 
    87     //excess is needed only in preflow  | 
         | 
    88     typename Graph::template NodeMap<Num> excess;   | 
         | 
    89   | 
         | 
    90   | 
         | 
    91     //fixme  | 
         | 
    92     //   protected:  | 
         | 
    93     //     MaxFlow() { } | 
         | 
    94     //     void set(const Graph& _G, Node _s, Node _t, const CapMap& _capacity,   | 
         | 
    95     // 	     FlowMap& _flow)   | 
         | 
    96     //       { | 
         | 
    97     // 	g=&_G;   | 
         | 
    98     // 	s=_s;   | 
         | 
    99     // 	t=_t;   | 
         | 
   100     // 	capacity=&_capacity;  | 
         | 
   101     // 	flow=&_flow;  | 
         | 
   102     // 	n=_G.nodeNum;  | 
         | 
   103     // 	level.set (_G); //kellene vmi ilyesmi fv   | 
         | 
   104     // 	excess(_G,0); //itt is  | 
         | 
   105     //       }  | 
         | 
   106   | 
         | 
   107   public:  | 
         | 
   108    | 
         | 
   109     ///Indicates the property of the starting flow.   | 
         | 
   110   | 
         | 
   111     ///Indicates the property of the starting flow. The meanings:   | 
         | 
   112     ///- \c ZERO_FLOW: constant zero flow  | 
         | 
   113     ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to  | 
         | 
   114     ///the sum of the out-flows in every node except the source and  | 
         | 
   115     ///the target.  | 
         | 
   116     ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at  | 
         | 
   117     ///least the sum of the out-flows in every node except the source.  | 
         | 
   118     enum flowEnum{ | 
         | 
   119       ZERO_FLOW=0,  | 
         | 
   120       GEN_FLOW=1,  | 
         | 
   121       PRE_FLOW=2  | 
         | 
   122     };  | 
         | 
   123   | 
         | 
   124     MaxFlow(const Graph& _G, Node _s, Node _t, const CapMap& _capacity,   | 
         | 
   125 	    FlowMap& _flow) :  | 
         | 
   126       g(&_G), s(_s), t(_t), capacity(&_capacity),   | 
         | 
   127       flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0) {} | 
         | 
   128   | 
         | 
   129     ///Runs a maximum flow algorithm.  | 
         | 
   130   | 
         | 
   131     ///Runs a preflow algorithm, which is the fastest maximum flow  | 
         | 
   132     ///algorithm up-to-date. The default for \c fe is ZERO_FLOW.  | 
         | 
   133     ///\pre The starting flow must be a   | 
         | 
   134     /// - constant zero flow if \c fe is \c ZERO_FLOW,  | 
         | 
   135     /// - an arbitary flow if \c fe is \c GEN_FLOW,   | 
         | 
   136     /// - an arbitary preflow if \c fe is \c PRE_FLOW.  | 
         | 
   137     void run( flowEnum fe=ZERO_FLOW ) { | 
         | 
   138       preflow(fe);  | 
         | 
   139     }  | 
         | 
   140       | 
         | 
   141     ///Runs a preflow algorithm.  | 
         | 
   142   | 
         | 
   143     ///Runs a preflow algorithm. The preflow algorithms provide the  | 
         | 
   144     ///fastest way to compute a maximum flow in a directed graph.  | 
         | 
   145     ///\pre The starting flow must be a   | 
         | 
   146     /// - constant zero flow if \c fe is \c ZERO_FLOW,  | 
         | 
   147     /// - an arbitary flow if \c fe is \c GEN_FLOW,   | 
         | 
   148     /// - an arbitary preflow if \c fe is \c PRE_FLOW.  | 
         | 
   149     void preflow(flowEnum fe) { | 
         | 
   150       preflowPhase1(fe);  | 
         | 
   151       preflowPhase2();  | 
         | 
   152     }  | 
         | 
   153     // Heuristics:   | 
         | 
   154     //   2 phase  | 
         | 
   155     //   gap  | 
         | 
   156     //   list 'level_list' on the nodes on level i implemented by hand  | 
         | 
   157     //   stack 'active' on the active nodes on level i  | 
         | 
   158     //   runs heuristic 'highest label' for H1*n relabels  | 
         | 
   159     //   runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label'  | 
         | 
   160     //   Parameters H0 and H1 are initialized to 20 and 1.  | 
         | 
   161   | 
         | 
   162     ///Runs the first phase of the preflow algorithm.  | 
         | 
   163       | 
         | 
   164     ///The preflow algorithm consists of two phases, this method runs the  | 
         | 
   165     ///first phase. After the first phase the maximum flow value and a  | 
         | 
   166     ///minimum value cut can already be computed, though a maximum flow  | 
         | 
   167     ///is net yet obtained. So after calling this method \ref flowValue  | 
         | 
   168     ///and \ref actMinCut gives proper results.   | 
         | 
   169     ///\warning: \ref minCut, \ref minMinCut and \ref maxMinCut do not  | 
         | 
   170     ///give minimum value cuts unless calling \ref preflowPhase2.  | 
         | 
   171     ///\pre The starting flow must be a   | 
         | 
   172     /// - constant zero flow if \c fe is \c ZERO_FLOW,  | 
         | 
   173     /// - an arbitary flow if \c fe is \c GEN_FLOW,   | 
         | 
   174     /// - an arbitary preflow if \c fe is \c PRE_FLOW.  | 
         | 
   175     void preflowPhase1( flowEnum fe );  | 
         | 
   176   | 
         | 
   177     ///Runs the second phase of the preflow algorithm.  | 
         | 
   178       | 
         | 
   179     ///The preflow algorithm consists of two phases, this method runs  | 
         | 
   180     ///the second phase. After calling \ref preflowPhase1 and then  | 
         | 
   181     ///\ref preflowPhase2 the methods \ref flowValue, \ref minCut,  | 
         | 
   182     ///\ref minMinCut and \ref maxMinCut give proper results.  | 
         | 
   183     ///\pre \ref preflowPhase1 must be called before.  | 
         | 
   184     void preflowPhase2();  | 
         | 
   185   | 
         | 
   186     /// Starting from a flow, this method searches for an augmenting path   | 
         | 
   187     /// according to the Edmonds-Karp algorithm   | 
         | 
   188     /// and augments the flow on if any.   | 
         | 
   189     /// The return value shows if the augmentation was successful.  | 
         | 
   190     bool augmentOnShortestPath();  | 
         | 
   191   | 
         | 
   192     /// Starting from a flow, this method searches for an augmenting blockin   | 
         | 
   193     /// flow according to Dinits' algorithm and augments the flow on if any.   | 
         | 
   194     /// The blocking flow is computed in a physically constructed   | 
         | 
   195     /// residual graph of type \c Mutablegraph.  | 
         | 
   196     /// The return value show sif the augmentation was succesful.  | 
         | 
   197     template<typename MutableGraph> bool augmentOnBlockingFlow();  | 
         | 
   198   | 
         | 
   199     /// The same as \c augmentOnBlockingFlow<MutableGraph> but the   | 
         | 
   200     /// residual graph is not constructed physically.  | 
         | 
   201     /// The return value shows if the augmentation was succesful.  | 
         | 
   202     bool augmentOnBlockingFlow2();  | 
         | 
   203   | 
         | 
   204     /// Returns the actual flow value.  | 
         | 
   205     /// More precisely, it returns the negative excess of s, thus   | 
         | 
   206     /// this works also for preflows.  | 
         | 
   207     ///Can be called already after \ref preflowPhase1.  | 
         | 
   208   | 
         | 
   209     Num flowValue() {  | 
         | 
   210       Num a=0;  | 
         | 
   211       FOR_EACH_INC_LOC(OutEdgeIt, e, *g, s) a+=(*flow)[e];  | 
         | 
   212       FOR_EACH_INC_LOC(InEdgeIt, e, *g, s) a-=(*flow)[e];  | 
         | 
   213       return a;  | 
         | 
   214       //marci figyu: excess[t] epp ezt adja preflow 0. fazisa utan  | 
         | 
   215     }  | 
         | 
   216   | 
         | 
   217     ///Returns a minimum value cut after calling \ref preflowPhase1.  | 
         | 
   218   | 
         | 
   219     ///After the first phase of the preflow algorithm the maximum flow  | 
         | 
   220     ///value and a minimum value cut can already be computed. This  | 
         | 
   221     ///method can be called after running \ref preflowPhase1 for  | 
         | 
   222     ///obtaining a minimum value cut.  | 
         | 
   223     ///\warning: Gives proper result only right after calling \ref  | 
         | 
   224     ///preflowPhase1.  | 
         | 
   225     ///\todo We have to make some status variable which shows the actual state   | 
         | 
   226     /// of the class. This enables us to determine which methods are valid   | 
         | 
   227     /// for MinCut computation  | 
         | 
   228     template<typename _CutMap>  | 
         | 
   229     void actMinCut(_CutMap& M) { | 
         | 
   230       NodeIt v;  | 
         | 
   231       for(g->first(v); g->valid(v); g->next(v)) { | 
         | 
   232 	if ( level[v] < n ) { | 
         | 
   233 	  M.set(v,false);  | 
         | 
   234 	} else { | 
         | 
   235 	  M.set(v,true);  | 
         | 
   236 	}  | 
         | 
   237       }  | 
         | 
   238     }  | 
         | 
   239       | 
         | 
   240     ///Returns the inclusionwise minimum of the minimum value cuts.  | 
         | 
   241   | 
         | 
   242     ///Sets \c M to the characteristic vector of the minimum value cut  | 
         | 
   243     ///which is inclusionwise minimum. It is computed by processing  | 
         | 
   244     ///a bfs from the source node \c s in the residual graph.  | 
         | 
   245     ///\pre M should be a node map of bools initialized to false.  | 
         | 
   246     ///\pre \c flow must be a maximum flow.  | 
         | 
   247     template<typename _CutMap>  | 
         | 
   248     void minMinCut(_CutMap& M) { | 
         | 
   249       | 
         | 
   250       std::queue<Node> queue;  | 
         | 
   251         | 
         | 
   252       M.set(s,true);        | 
         | 
   253       queue.push(s);  | 
         | 
   254   | 
         | 
   255       while (!queue.empty()) { | 
         | 
   256         Node w=queue.front();  | 
         | 
   257 	queue.pop();  | 
         | 
   258   | 
         | 
   259 	OutEdgeIt e;  | 
         | 
   260 	for(g->first(e,w) ; g->valid(e); g->next(e)) { | 
         | 
   261 	  Node v=g->head(e);  | 
         | 
   262 	  if (!M[v] && (*flow)[e] < (*capacity)[e] ) { | 
         | 
   263 	    queue.push(v);  | 
         | 
   264 	    M.set(v, true);  | 
         | 
   265 	  }  | 
         | 
   266 	}   | 
         | 
   267   | 
         | 
   268 	InEdgeIt f;  | 
         | 
   269 	for(g->first(f,w) ; g->valid(f); g->next(f)) { | 
         | 
   270 	  Node v=g->tail(f);  | 
         | 
   271 	  if (!M[v] && (*flow)[f] > 0 ) { | 
         | 
   272 	    queue.push(v);  | 
         | 
   273 	    M.set(v, true);  | 
         | 
   274 	  }  | 
         | 
   275 	}   | 
         | 
   276       }  | 
         | 
   277     }  | 
         | 
   278   | 
         | 
   279   | 
         | 
   280     ///Returns the inclusionwise maximum of the minimum value cuts.  | 
         | 
   281   | 
         | 
   282     ///Sets \c M to the characteristic vector of the minimum value cut  | 
         | 
   283     ///which is inclusionwise maximum. It is computed by processing a  | 
         | 
   284     ///backward bfs from the target node \c t in the residual graph.  | 
         | 
   285     ///\pre M should be a node map of bools initialized to false.  | 
         | 
   286     ///\pre \c flow must be a maximum flow.  | 
         | 
   287     template<typename _CutMap>  | 
         | 
   288     void maxMinCut(_CutMap& M) { | 
         | 
   289   | 
         | 
   290       NodeIt v;  | 
         | 
   291       for(g->first(v) ; g->valid(v); g->next(v)) { | 
         | 
   292 	M.set(v, true);  | 
         | 
   293       }  | 
         | 
   294   | 
         | 
   295       std::queue<Node> queue;  | 
         | 
   296         | 
         | 
   297       M.set(t,false);          | 
         | 
   298       queue.push(t);  | 
         | 
   299   | 
         | 
   300       while (!queue.empty()) { | 
         | 
   301         Node w=queue.front();  | 
         | 
   302 	queue.pop();  | 
         | 
   303   | 
         | 
   304   | 
         | 
   305 	InEdgeIt e;  | 
         | 
   306 	for(g->first(e,w) ; g->valid(e); g->next(e)) { | 
         | 
   307 	  Node v=g->tail(e);  | 
         | 
   308 	  if (M[v] && (*flow)[e] < (*capacity)[e] ) { | 
         | 
   309 	    queue.push(v);  | 
         | 
   310 	    M.set(v, false);  | 
         | 
   311 	  }  | 
         | 
   312 	}  | 
         | 
   313 	  | 
         | 
   314 	OutEdgeIt f;  | 
         | 
   315 	for(g->first(f,w) ; g->valid(f); g->next(f)) { | 
         | 
   316 	  Node v=g->head(f);  | 
         | 
   317 	  if (M[v] && (*flow)[f] > 0 ) { | 
         | 
   318 	    queue.push(v);  | 
         | 
   319 	    M.set(v, false);  | 
         | 
   320 	  }  | 
         | 
   321 	}  | 
         | 
   322       }  | 
         | 
   323     }  | 
         | 
   324   | 
         | 
   325   | 
         | 
   326     ///Returns a minimum value cut.  | 
         | 
   327   | 
         | 
   328     ///Sets \c M to the characteristic vector of a minimum value cut.  | 
         | 
   329     ///\pre M should be a node map of bools initialized to false.  | 
         | 
   330     ///\pre \c flow must be a maximum flow.  | 
         | 
   331     template<typename CutMap>  | 
         | 
   332     void minCut(CutMap& M) { minMinCut(M); } | 
         | 
   333   | 
         | 
   334     ///Resets the source node to \c _s.  | 
         | 
   335   | 
         | 
   336     ///Resets the source node to \c _s.  | 
         | 
   337     ///  | 
         | 
   338     void resetSource(Node _s) { s=_s; } | 
         | 
   339   | 
         | 
   340   | 
         | 
   341     ///Resets the target node to \c _t.  | 
         | 
   342   | 
         | 
   343     ///Resets the target node to \c _t.  | 
         | 
   344     ///  | 
         | 
   345     void resetTarget(Node _t) { t=_t; } | 
         | 
   346      | 
         | 
   347     /// Resets the edge map of the capacities to _cap.  | 
         | 
   348   | 
         | 
   349     /// Resets the edge map of the capacities to _cap.  | 
         | 
   350     ///  | 
         | 
   351     void resetCap(const CapMap& _cap) { capacity=&_cap; } | 
         | 
   352       | 
         | 
   353     /// Resets the edge map of the flows to _flow.  | 
         | 
   354   | 
         | 
   355     /// Resets the edge map of the flows to _flow.  | 
         | 
   356     ///  | 
         | 
   357     void resetFlow(FlowMap& _flow) { flow=&_flow; } | 
         | 
   358   | 
         | 
   359   | 
         | 
   360   private:  | 
         | 
   361   | 
         | 
   362     int push(Node w, VecStack& active) { | 
         | 
   363         | 
         | 
   364       int lev=level[w];  | 
         | 
   365       Num exc=excess[w];  | 
         | 
   366       int newlevel=n;       //bound on the next level of w  | 
         | 
   367 	    | 
         | 
   368       OutEdgeIt e;  | 
         | 
   369       for(g->first(e,w); g->valid(e); g->next(e)) { | 
         | 
   370 	      | 
         | 
   371 	if ( (*flow)[e] >= (*capacity)[e] ) continue;   | 
         | 
   372 	Node v=g->head(e);              | 
         | 
   373 	      | 
         | 
   374 	if( lev > level[v] ) { //Push is allowed now | 
         | 
   375 	    | 
         | 
   376 	  if ( excess[v]<=0 && v!=t && v!=s ) { | 
         | 
   377 	    int lev_v=level[v];  | 
         | 
   378 	    active[lev_v].push(v);  | 
         | 
   379 	  }  | 
         | 
   380 	    | 
         | 
   381 	  Num cap=(*capacity)[e];  | 
         | 
   382 	  Num flo=(*flow)[e];  | 
         | 
   383 	  Num remcap=cap-flo;  | 
         | 
   384 	    | 
         | 
   385 	  if ( remcap >= exc ) { //A nonsaturating push. | 
         | 
   386 	      | 
         | 
   387 	    flow->set(e, flo+exc);  | 
         | 
   388 	    excess.set(v, excess[v]+exc);  | 
         | 
   389 	    exc=0;  | 
         | 
   390 	    break;   | 
         | 
   391 	      | 
         | 
   392 	  } else { //A saturating push. | 
         | 
   393 	    flow->set(e, cap);  | 
         | 
   394 	    excess.set(v, excess[v]+remcap);  | 
         | 
   395 	    exc-=remcap;  | 
         | 
   396 	  }  | 
         | 
   397 	} else if ( newlevel > level[v] ) newlevel = level[v];  | 
         | 
   398       } //for out edges wv   | 
         | 
   399         | 
         | 
   400       if ( exc > 0 ) {	 | 
         | 
   401 	InEdgeIt e;  | 
         | 
   402 	for(g->first(e,w); g->valid(e); g->next(e)) { | 
         | 
   403 	    | 
         | 
   404 	  if( (*flow)[e] <= 0 ) continue;   | 
         | 
   405 	  Node v=g->tail(e);   | 
         | 
   406 	    | 
         | 
   407 	  if( lev > level[v] ) { //Push is allowed now | 
         | 
   408 	      | 
         | 
   409 	    if ( excess[v]<=0 && v!=t && v!=s ) { | 
         | 
   410 	      int lev_v=level[v];  | 
         | 
   411 	      active[lev_v].push(v);  | 
         | 
   412 	    }  | 
         | 
   413 	      | 
         | 
   414 	    Num flo=(*flow)[e];  | 
         | 
   415 	      | 
         | 
   416 	    if ( flo >= exc ) { //A nonsaturating push. | 
         | 
   417 	        | 
         | 
   418 	      flow->set(e, flo-exc);  | 
         | 
   419 	      excess.set(v, excess[v]+exc);  | 
         | 
   420 	      exc=0;  | 
         | 
   421 	      break;   | 
         | 
   422 	    } else {  //A saturating push. | 
         | 
   423 	        | 
         | 
   424 	      excess.set(v, excess[v]+flo);  | 
         | 
   425 	      exc-=flo;  | 
         | 
   426 	      flow->set(e,0);  | 
         | 
   427 	    }    | 
         | 
   428 	  } else if ( newlevel > level[v] ) newlevel = level[v];  | 
         | 
   429 	} //for in edges vw  | 
         | 
   430 	  | 
         | 
   431       } // if w still has excess after the out edge for cycle  | 
         | 
   432         | 
         | 
   433       excess.set(w, exc);  | 
         | 
   434         | 
         | 
   435       return newlevel;  | 
         | 
   436     }  | 
         | 
   437   | 
         | 
   438   | 
         | 
   439     void preflowPreproc ( flowEnum fe, VecStack& active,   | 
         | 
   440 			  VecNode& level_list, NNMap& left, NNMap& right ) { | 
         | 
   441   | 
         | 
   442 			    std::queue<Node> bfs_queue;  | 
         | 
   443         | 
         | 
   444 			    switch ( fe ) { | 
         | 
   445 			    case ZERO_FLOW:   | 
         | 
   446 			      { | 
         | 
   447 				//Reverse_bfs from t, to find the starting level.  | 
         | 
   448 				level.set(t,0);  | 
         | 
   449 				bfs_queue.push(t);  | 
         | 
   450 	  | 
         | 
   451 				while (!bfs_queue.empty()) { | 
         | 
   452 	      | 
         | 
   453 				  Node v=bfs_queue.front();	  | 
         | 
   454 				  bfs_queue.pop();  | 
         | 
   455 				  int l=level[v]+1;  | 
         | 
   456 	      | 
         | 
   457 				  InEdgeIt e;  | 
         | 
   458 				  for(g->first(e,v); g->valid(e); g->next(e)) { | 
         | 
   459 				    Node w=g->tail(e);  | 
         | 
   460 				    if ( level[w] == n && w != s ) { | 
         | 
   461 				      bfs_queue.push(w);  | 
         | 
   462 				      Node first=level_list[l];  | 
         | 
   463 				      if ( g->valid(first) ) left.set(first,w);  | 
         | 
   464 				      right.set(w,first);  | 
         | 
   465 				      level_list[l]=w;  | 
         | 
   466 				      level.set(w, l);  | 
         | 
   467 				    }  | 
         | 
   468 				  }  | 
         | 
   469 				}  | 
         | 
   470 	    | 
         | 
   471 				//the starting flow  | 
         | 
   472 				OutEdgeIt e;  | 
         | 
   473 				for(g->first(e,s); g->valid(e); g->next(e))   | 
         | 
   474 				  { | 
         | 
   475 				    Num c=(*capacity)[e];  | 
         | 
   476 				    if ( c <= 0 ) continue;  | 
         | 
   477 				    Node w=g->head(e);  | 
         | 
   478 				    if ( level[w] < n ) {	   | 
         | 
   479 				      if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);  | 
         | 
   480 				      flow->set(e, c);   | 
         | 
   481 				      excess.set(w, excess[w]+c);  | 
         | 
   482 				    }  | 
         | 
   483 				  }  | 
         | 
   484 				break;  | 
         | 
   485 			      }  | 
         | 
   486 	  | 
         | 
   487 			    case GEN_FLOW:  | 
         | 
   488 			    case PRE_FLOW:  | 
         | 
   489 			      { | 
         | 
   490 				//Reverse_bfs from t in the residual graph,   | 
         | 
   491 				//to find the starting level.  | 
         | 
   492 				level.set(t,0);  | 
         | 
   493 				bfs_queue.push(t);  | 
         | 
   494 	    | 
         | 
   495 				while (!bfs_queue.empty()) { | 
         | 
   496 	      | 
         | 
   497 				  Node v=bfs_queue.front();	  | 
         | 
   498 				  bfs_queue.pop();  | 
         | 
   499 				  int l=level[v]+1;  | 
         | 
   500 	      | 
         | 
   501 				  InEdgeIt e;  | 
         | 
   502 				  for(g->first(e,v); g->valid(e); g->next(e)) { | 
         | 
   503 				    if ( (*capacity)[e] <= (*flow)[e] ) continue;  | 
         | 
   504 				    Node w=g->tail(e);  | 
         | 
   505 				    if ( level[w] == n && w != s ) { | 
         | 
   506 				      bfs_queue.push(w);  | 
         | 
   507 				      Node first=level_list[l];  | 
         | 
   508 				      if ( g->valid(first) ) left.set(first,w);  | 
         | 
   509 				      right.set(w,first);  | 
         | 
   510 				      level_list[l]=w;  | 
         | 
   511 				      level.set(w, l);  | 
         | 
   512 				    }  | 
         | 
   513 				  }  | 
         | 
   514 	      | 
         | 
   515 				  OutEdgeIt f;  | 
         | 
   516 				  for(g->first(f,v); g->valid(f); g->next(f)) { | 
         | 
   517 				    if ( 0 >= (*flow)[f] ) continue;  | 
         | 
   518 				    Node w=g->head(f);  | 
         | 
   519 				    if ( level[w] == n && w != s ) { | 
         | 
   520 				      bfs_queue.push(w);  | 
         | 
   521 				      Node first=level_list[l];  | 
         | 
   522 				      if ( g->valid(first) ) left.set(first,w);  | 
         | 
   523 				      right.set(w,first);  | 
         | 
   524 				      level_list[l]=w;  | 
         | 
   525 				      level.set(w, l);  | 
         | 
   526 				    }  | 
         | 
   527 				  }  | 
         | 
   528 				}  | 
         | 
   529 	    | 
         | 
   530 	    | 
         | 
   531 				//the starting flow  | 
         | 
   532 				OutEdgeIt e;  | 
         | 
   533 				for(g->first(e,s); g->valid(e); g->next(e))   | 
         | 
   534 				  { | 
         | 
   535 				    Num rem=(*capacity)[e]-(*flow)[e];  | 
         | 
   536 				    if ( rem <= 0 ) continue;  | 
         | 
   537 				    Node w=g->head(e);  | 
         | 
   538 				    if ( level[w] < n ) {	   | 
         | 
   539 				      if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);  | 
         | 
   540 				      flow->set(e, (*capacity)[e]);   | 
         | 
   541 				      excess.set(w, excess[w]+rem);  | 
         | 
   542 				    }  | 
         | 
   543 				  }  | 
         | 
   544 	    | 
         | 
   545 				InEdgeIt f;  | 
         | 
   546 				for(g->first(f,s); g->valid(f); g->next(f))   | 
         | 
   547 				  { | 
         | 
   548 				    if ( (*flow)[f] <= 0 ) continue;  | 
         | 
   549 				    Node w=g->tail(f);  | 
         | 
   550 				    if ( level[w] < n ) {	   | 
         | 
   551 				      if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);  | 
         | 
   552 				      excess.set(w, excess[w]+(*flow)[f]);  | 
         | 
   553 				      flow->set(f, 0);   | 
         | 
   554 				    }  | 
         | 
   555 				  }    | 
         | 
   556 				break;  | 
         | 
   557 			      } //case PRE_FLOW  | 
         | 
   558 			    }  | 
         | 
   559 			  } //preflowPreproc  | 
         | 
   560   | 
         | 
   561   | 
         | 
   562   | 
         | 
   563     void relabel(Node w, int newlevel, VecStack& active,    | 
         | 
   564 		 VecNode& level_list, NNMap& left,   | 
         | 
   565 		 NNMap& right, int& b, int& k, bool what_heur )   | 
         | 
   566     { | 
         | 
   567   | 
         | 
   568       Num lev=level[w];	  | 
         | 
   569         | 
         | 
   570       Node right_n=right[w];  | 
         | 
   571       Node left_n=left[w];  | 
         | 
   572         | 
         | 
   573       //unlacing starts  | 
         | 
   574       if ( g->valid(right_n) ) { | 
         | 
   575 	if ( g->valid(left_n) ) { | 
         | 
   576 	  right.set(left_n, right_n);  | 
         | 
   577 	  left.set(right_n, left_n);  | 
         | 
   578 	} else { | 
         | 
   579 	  level_list[lev]=right_n;     | 
         | 
   580 	  left.set(right_n, INVALID);  | 
         | 
   581 	}   | 
         | 
   582       } else { | 
         | 
   583 	if ( g->valid(left_n) ) { | 
         | 
   584 	  right.set(left_n, INVALID);  | 
         | 
   585 	} else {  | 
         | 
   586 	  level_list[lev]=INVALID;     | 
         | 
   587 	}   | 
         | 
   588       }   | 
         | 
   589       //unlacing ends  | 
         | 
   590 		  | 
         | 
   591       if ( !g->valid(level_list[lev]) ) { | 
         | 
   592 	        | 
         | 
   593 	//gapping starts  | 
         | 
   594 	for (int i=lev; i!=k ; ) { | 
         | 
   595 	  Node v=level_list[++i];  | 
         | 
   596 	  while ( g->valid(v) ) { | 
         | 
   597 	    level.set(v,n);  | 
         | 
   598 	    v=right[v];  | 
         | 
   599 	  }  | 
         | 
   600 	  level_list[i]=INVALID;  | 
         | 
   601 	  if ( !what_heur ) { | 
         | 
   602 	    while ( !active[i].empty() ) { | 
         | 
   603 	      active[i].pop();    //FIXME: ezt szebben kene  | 
         | 
   604 	    }  | 
         | 
   605 	  }	       | 
         | 
   606 	}  | 
         | 
   607 	  | 
         | 
   608 	level.set(w,n);  | 
         | 
   609 	b=lev-1;  | 
         | 
   610 	k=b;  | 
         | 
   611 	//gapping ends  | 
         | 
   612 	  | 
         | 
   613       } else { | 
         | 
   614 	  | 
         | 
   615 	if ( newlevel == n ) level.set(w,n);   | 
         | 
   616 	else { | 
         | 
   617 	  level.set(w,++newlevel);  | 
         | 
   618 	  active[newlevel].push(w);  | 
         | 
   619 	  if ( what_heur ) b=newlevel;  | 
         | 
   620 	  if ( k < newlevel ) ++k;      //now k=newlevel  | 
         | 
   621 	  Node first=level_list[newlevel];  | 
         | 
   622 	  if ( g->valid(first) ) left.set(first,w);  | 
         | 
   623 	  right.set(w,first);  | 
         | 
   624 	  left.set(w,INVALID);  | 
         | 
   625 	  level_list[newlevel]=w;  | 
         | 
   626 	}  | 
         | 
   627       }  | 
         | 
   628         | 
         | 
   629     } //relabel  | 
         | 
   630   | 
         | 
   631   | 
         | 
   632     template<typename MapGraphWrapper>   | 
         | 
   633     class DistanceMap { | 
         | 
   634     protected:  | 
         | 
   635       const MapGraphWrapper* g;  | 
         | 
   636       typename MapGraphWrapper::template NodeMap<int> dist;   | 
         | 
   637     public:  | 
         | 
   638       DistanceMap(MapGraphWrapper& _g) : g(&_g), dist(*g, g->nodeNum()) { } | 
         | 
   639       void set(const typename MapGraphWrapper::Node& n, int a) {  | 
         | 
   640 	dist.set(n, a);   | 
         | 
   641       }  | 
         | 
   642       int operator[](const typename MapGraphWrapper::Node& n)   | 
         | 
   643       { return dist[n]; } | 
         | 
   644       //       int get(const typename MapGraphWrapper::Node& n) const {  | 
         | 
   645       // 	return dist[n]; }  | 
         | 
   646       //       bool get(const typename MapGraphWrapper::Edge& e) const {  | 
         | 
   647       // 	return (dist.get(g->tail(e))<dist.get(g->head(e))); }  | 
         | 
   648       bool operator[](const typename MapGraphWrapper::Edge& e) const {  | 
         | 
   649 	return (dist[g->tail(e)]<dist[g->head(e)]);   | 
         | 
   650       }  | 
         | 
   651     };  | 
         | 
   652       | 
         | 
   653   };  | 
         | 
   654   | 
         | 
   655   | 
         | 
   656   template <typename Graph, typename Num, typename CapMap, typename FlowMap>  | 
         | 
   657   void MaxFlow<Graph, Num, CapMap, FlowMap>::preflowPhase1( flowEnum fe )   | 
         | 
   658   { | 
         | 
   659         | 
         | 
   660     int heur0=(int)(H0*n);  //time while running 'bound decrease'   | 
         | 
   661     int heur1=(int)(H1*n);  //time while running 'highest label'  | 
         | 
   662     int heur=heur1;         //starting time interval (#of relabels)  | 
         | 
   663     int numrelabel=0;  | 
         | 
   664        | 
         | 
   665     bool what_heur=1;         | 
         | 
   666     //It is 0 in case 'bound decrease' and 1 in case 'highest label'  | 
         | 
   667   | 
         | 
   668     bool end=false;       | 
         | 
   669     //Needed for 'bound decrease', true means no active nodes are above bound b.  | 
         | 
   670   | 
         | 
   671     int k=n-2;  //bound on the highest level under n containing a node  | 
         | 
   672     int b=k;    //bound on the highest level under n of an active node  | 
         | 
   673         | 
         | 
   674     VecStack active(n);  | 
         | 
   675         | 
         | 
   676     NNMap left(*g, INVALID);  | 
         | 
   677     NNMap right(*g, INVALID);  | 
         | 
   678     VecNode level_list(n,INVALID);  | 
         | 
   679     //List of the nodes in level i<n, set to n.  | 
         | 
   680   | 
         | 
   681     NodeIt v;  | 
         | 
   682     for(g->first(v); g->valid(v); g->next(v)) level.set(v,n);  | 
         | 
   683     //setting each node to level n  | 
         | 
   684         | 
         | 
   685     switch ( fe ) { | 
         | 
   686     case PRE_FLOW:  | 
         | 
   687       { | 
         | 
   688 	//counting the excess  | 
         | 
   689 	NodeIt v;  | 
         | 
   690 	for(g->first(v); g->valid(v); g->next(v)) { | 
         | 
   691 	  Num exc=0;  | 
         | 
   692 	    | 
         | 
   693 	  InEdgeIt e;  | 
         | 
   694 	  for(g->first(e,v); g->valid(e); g->next(e)) exc+=(*flow)[e];  | 
         | 
   695 	  OutEdgeIt f;  | 
         | 
   696 	  for(g->first(f,v); g->valid(f); g->next(f)) exc-=(*flow)[f];  | 
         | 
   697 	      | 
         | 
   698 	  excess.set(v,exc);	    | 
         | 
   699 	      | 
         | 
   700 	  //putting the active nodes into the stack  | 
         | 
   701 	  int lev=level[v];  | 
         | 
   702 	  if ( exc > 0 && lev < n && v != t ) active[lev].push(v);  | 
         | 
   703 	}  | 
         | 
   704 	break;  | 
         | 
   705       }  | 
         | 
   706     case GEN_FLOW:  | 
         | 
   707       { | 
         | 
   708 	//Counting the excess of t  | 
         | 
   709 	Num exc=0;  | 
         | 
   710 	    | 
         | 
   711 	InEdgeIt e;  | 
         | 
   712 	for(g->first(e,t); g->valid(e); g->next(e)) exc+=(*flow)[e];  | 
         | 
   713 	OutEdgeIt f;  | 
         | 
   714 	for(g->first(f,t); g->valid(f); g->next(f)) exc-=(*flow)[f];  | 
         | 
   715 	    | 
         | 
   716 	excess.set(t,exc);	  | 
         | 
   717 	    | 
         | 
   718 	break;  | 
         | 
   719       }  | 
         | 
   720     default:  | 
         | 
   721       break;  | 
         | 
   722     }  | 
         | 
   723         | 
         | 
   724     preflowPreproc( fe, active, level_list, left, right );  | 
         | 
   725     //End of preprocessing   | 
         | 
   726         | 
         | 
   727         | 
         | 
   728     //Push/relabel on the highest level active nodes.  | 
         | 
   729     while ( true ) { | 
         | 
   730       if ( b == 0 ) { | 
         | 
   731 	if ( !what_heur && !end && k > 0 ) { | 
         | 
   732 	  b=k;  | 
         | 
   733 	  end=true;  | 
         | 
   734 	} else break;  | 
         | 
   735       }  | 
         | 
   736 	  | 
         | 
   737       if ( active[b].empty() ) --b;   | 
         | 
   738       else { | 
         | 
   739 	end=false;    | 
         | 
   740 	Node w=active[b].top();  | 
         | 
   741 	active[b].pop();  | 
         | 
   742 	int newlevel=push(w,active);  | 
         | 
   743 	if ( excess[w] > 0 ) relabel(w, newlevel, active, level_list,   | 
         | 
   744 				     left, right, b, k, what_heur);  | 
         | 
   745 	    | 
         | 
   746 	++numrelabel;   | 
         | 
   747 	if ( numrelabel >= heur ) { | 
         | 
   748 	  numrelabel=0;  | 
         | 
   749 	  if ( what_heur ) { | 
         | 
   750 	    what_heur=0;  | 
         | 
   751 	    heur=heur0;  | 
         | 
   752 	    end=false;  | 
         | 
   753 	  } else { | 
         | 
   754 	    what_heur=1;  | 
         | 
   755 	    heur=heur1;  | 
         | 
   756 	    b=k;   | 
         | 
   757 	  }  | 
         | 
   758 	}  | 
         | 
   759       }   | 
         | 
   760     }   | 
         | 
   761   }  | 
         | 
   762   | 
         | 
   763   | 
         | 
   764   | 
         | 
   765   template <typename Graph, typename Num, typename CapMap, typename FlowMap>  | 
         | 
   766   void MaxFlow<Graph, Num, CapMap, FlowMap>::preflowPhase2()   | 
         | 
   767   { | 
         | 
   768         | 
         | 
   769     int k=n-2;  //bound on the highest level under n containing a node  | 
         | 
   770     int b=k;    //bound on the highest level under n of an active node  | 
         | 
   771         | 
         | 
   772     VecStack active(n);  | 
         | 
   773     level.set(s,0);  | 
         | 
   774     std::queue<Node> bfs_queue;  | 
         | 
   775     bfs_queue.push(s);  | 
         | 
   776 	      | 
         | 
   777     while (!bfs_queue.empty()) { | 
         | 
   778 	  | 
         | 
   779       Node v=bfs_queue.front();	  | 
         | 
   780       bfs_queue.pop();  | 
         | 
   781       int l=level[v]+1;  | 
         | 
   782 	        | 
         | 
   783       InEdgeIt e;  | 
         | 
   784       for(g->first(e,v); g->valid(e); g->next(e)) { | 
         | 
   785 	if ( (*capacity)[e] <= (*flow)[e] ) continue;  | 
         | 
   786 	Node u=g->tail(e);  | 
         | 
   787 	if ( level[u] >= n ) {  | 
         | 
   788 	  bfs_queue.push(u);  | 
         | 
   789 	  level.set(u, l);  | 
         | 
   790 	  if ( excess[u] > 0 ) active[l].push(u);  | 
         | 
   791 	}  | 
         | 
   792       }  | 
         | 
   793 	  | 
         | 
   794       OutEdgeIt f;  | 
         | 
   795       for(g->first(f,v); g->valid(f); g->next(f)) { | 
         | 
   796 	if ( 0 >= (*flow)[f] ) continue;  | 
         | 
   797 	Node u=g->head(f);  | 
         | 
   798 	if ( level[u] >= n ) {  | 
         | 
   799 	  bfs_queue.push(u);  | 
         | 
   800 	  level.set(u, l);  | 
         | 
   801 	  if ( excess[u] > 0 ) active[l].push(u);  | 
         | 
   802 	}  | 
         | 
   803       }  | 
         | 
   804     }  | 
         | 
   805     b=n-2;  | 
         | 
   806   | 
         | 
   807     while ( true ) { | 
         | 
   808 	  | 
         | 
   809       if ( b == 0 ) break;  | 
         | 
   810   | 
         | 
   811       if ( active[b].empty() ) --b;   | 
         | 
   812       else { | 
         | 
   813 	Node w=active[b].top();  | 
         | 
   814 	active[b].pop();  | 
         | 
   815 	int newlevel=push(w,active);	    | 
         | 
   816   | 
         | 
   817 	//relabel  | 
         | 
   818 	if ( excess[w] > 0 ) { | 
         | 
   819 	  level.set(w,++newlevel);  | 
         | 
   820 	  active[newlevel].push(w);  | 
         | 
   821 	  b=newlevel;  | 
         | 
   822 	}  | 
         | 
   823       }  // if stack[b] is nonempty  | 
         | 
   824     } // while(true)  | 
         | 
   825   }  | 
         | 
   826   | 
         | 
   827   | 
         | 
   828   | 
         | 
   829   template <typename Graph, typename Num, typename CapMap, typename FlowMap>  | 
         | 
   830   bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnShortestPath()   | 
         | 
   831   { | 
         | 
   832     ResGW res_graph(*g, *capacity, *flow);  | 
         | 
   833     bool _augment=false;  | 
         | 
   834         | 
         | 
   835     //ReachedMap level(res_graph);  | 
         | 
   836     FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);  | 
         | 
   837     BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);  | 
         | 
   838     bfs.pushAndSetReached(s);  | 
         | 
   839 	  | 
         | 
   840     typename ResGW::template NodeMap<ResGWEdge> pred(res_graph);   | 
         | 
   841     pred.set(s, INVALID);  | 
         | 
   842         | 
         | 
   843     typename ResGW::template NodeMap<Num> free(res_graph);  | 
         | 
   844 	  | 
         | 
   845     //searching for augmenting path  | 
         | 
   846     while ( !bfs.finished() ) {  | 
         | 
   847       ResGWOutEdgeIt e=bfs;  | 
         | 
   848       if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) { | 
         | 
   849 	Node v=res_graph.tail(e);  | 
         | 
   850 	Node w=res_graph.head(e);  | 
         | 
   851 	pred.set(w, e);  | 
         | 
   852 	if (res_graph.valid(pred[v])) { | 
         | 
   853 	  free.set(w, std::min(free[v], res_graph.resCap(e)));  | 
         | 
   854 	} else { | 
         | 
   855 	  free.set(w, res_graph.resCap(e));   | 
         | 
   856 	}  | 
         | 
   857 	if (res_graph.head(e)==t) { _augment=true; break; } | 
         | 
   858       }  | 
         | 
   859 	  | 
         | 
   860       ++bfs;  | 
         | 
   861     } //end of searching augmenting path  | 
         | 
   862   | 
         | 
   863     if (_augment) { | 
         | 
   864       Node n=t;  | 
         | 
   865       Num augment_value=free[t];  | 
         | 
   866       while (res_graph.valid(pred[n])) {  | 
         | 
   867 	ResGWEdge e=pred[n];  | 
         | 
   868 	res_graph.augment(e, augment_value);   | 
         | 
   869 	n=res_graph.tail(e);  | 
         | 
   870       }  | 
         | 
   871     }  | 
         | 
   872   | 
         | 
   873     return _augment;  | 
         | 
   874   }  | 
         | 
   875   | 
         | 
   876   | 
         | 
   877   | 
         | 
   878   | 
         | 
   879   | 
         | 
   880   | 
         | 
   881   | 
         | 
   882   | 
         | 
   883   | 
         | 
   884   template <typename Graph, typename Num, typename CapMap, typename FlowMap>  | 
         | 
   885   template<typename MutableGraph>   | 
         | 
   886   bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow()   | 
         | 
   887   {       | 
         | 
   888     typedef MutableGraph MG;  | 
         | 
   889     bool _augment=false;  | 
         | 
   890   | 
         | 
   891     ResGW res_graph(*g, *capacity, *flow);  | 
         | 
   892   | 
         | 
   893     //bfs for distances on the residual graph  | 
         | 
   894     //ReachedMap level(res_graph);  | 
         | 
   895     FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);  | 
         | 
   896     BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);  | 
         | 
   897     bfs.pushAndSetReached(s);  | 
         | 
   898     typename ResGW::template NodeMap<int>   | 
         | 
   899       dist(res_graph); //filled up with 0's  | 
         | 
   900   | 
         | 
   901     //F will contain the physical copy of the residual graph  | 
         | 
   902     //with the set of edges which are on shortest paths  | 
         | 
   903     MG F;  | 
         | 
   904     typename ResGW::template NodeMap<typename MG::Node>   | 
         | 
   905       res_graph_to_F(res_graph);  | 
         | 
   906     { | 
         | 
   907       typename ResGW::NodeIt n;  | 
         | 
   908       for(res_graph.first(n); res_graph.valid(n); res_graph.next(n)) { | 
         | 
   909 	res_graph_to_F.set(n, F.addNode());  | 
         | 
   910       }  | 
         | 
   911     }  | 
         | 
   912   | 
         | 
   913     typename MG::Node sF=res_graph_to_F[s];  | 
         | 
   914     typename MG::Node tF=res_graph_to_F[t];  | 
         | 
   915     typename MG::template EdgeMap<ResGWEdge> original_edge(F);  | 
         | 
   916     typename MG::template EdgeMap<Num> residual_capacity(F);  | 
         | 
   917   | 
         | 
   918     while ( !bfs.finished() ) {  | 
         | 
   919       ResGWOutEdgeIt e=bfs;  | 
         | 
   920       if (res_graph.valid(e)) { | 
         | 
   921 	if (bfs.isBNodeNewlyReached()) { | 
         | 
   922 	  dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1);  | 
         | 
   923 	  typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)], res_graph_to_F[res_graph.head(e)]);  | 
         | 
   924 	  original_edge.update();  | 
         | 
   925 	  original_edge.set(f, e);  | 
         | 
   926 	  residual_capacity.update();  | 
         | 
   927 	  residual_capacity.set(f, res_graph.resCap(e));  | 
         | 
   928 	} else { | 
         | 
   929 	  if (dist[res_graph.head(e)]==(dist[res_graph.tail(e)]+1)) { | 
         | 
   930 	    typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)], res_graph_to_F[res_graph.head(e)]);  | 
         | 
   931 	    original_edge.update();  | 
         | 
   932 	    original_edge.set(f, e);  | 
         | 
   933 	    residual_capacity.update();  | 
         | 
   934 	    residual_capacity.set(f, res_graph.resCap(e));  | 
         | 
   935 	  }  | 
         | 
   936 	}  | 
         | 
   937       }  | 
         | 
   938       ++bfs;  | 
         | 
   939     } //computing distances from s in the residual graph  | 
         | 
   940   | 
         | 
   941     bool __augment=true;  | 
         | 
   942   | 
         | 
   943     while (__augment) { | 
         | 
   944       __augment=false;  | 
         | 
   945       //computing blocking flow with dfs  | 
         | 
   946       DfsIterator< MG, typename MG::template NodeMap<bool> > dfs(F);  | 
         | 
   947       typename MG::template NodeMap<typename MG::Edge> pred(F);  | 
         | 
   948       pred.set(sF, INVALID);  | 
         | 
   949       //invalid iterators for sources  | 
         | 
   950   | 
         | 
   951       typename MG::template NodeMap<Num> free(F);  | 
         | 
   952   | 
         | 
   953       dfs.pushAndSetReached(sF);        | 
         | 
   954       while (!dfs.finished()) { | 
         | 
   955 	++dfs;  | 
         | 
   956 	if (F.valid(/*typename MG::OutEdgeIt*/(dfs))) { | 
         | 
   957 	  if (dfs.isBNodeNewlyReached()) { | 
         | 
   958 	    typename MG::Node v=F.aNode(dfs);  | 
         | 
   959 	    typename MG::Node w=F.bNode(dfs);  | 
         | 
   960 	    pred.set(w, dfs);  | 
         | 
   961 	    if (F.valid(pred[v])) { | 
         | 
   962 	      free.set(w, std::min(free[v], residual_capacity[dfs]));  | 
         | 
   963 	    } else { | 
         | 
   964 	      free.set(w, residual_capacity[dfs]);   | 
         | 
   965 	    }  | 
         | 
   966 	    if (w==tF) {  | 
         | 
   967 	      __augment=true;   | 
         | 
   968 	      _augment=true;  | 
         | 
   969 	      break;   | 
         | 
   970 	    }  | 
         | 
   971 	        | 
         | 
   972 	  } else { | 
         | 
   973 	    F.erase(/*typename MG::OutEdgeIt*/(dfs));  | 
         | 
   974 	  }  | 
         | 
   975 	}   | 
         | 
   976       }  | 
         | 
   977   | 
         | 
   978       if (__augment) { | 
         | 
   979 	typename MG::Node n=tF;  | 
         | 
   980 	Num augment_value=free[tF];  | 
         | 
   981 	while (F.valid(pred[n])) {  | 
         | 
   982 	  typename MG::Edge e=pred[n];  | 
         | 
   983 	  res_graph.augment(original_edge[e], augment_value);   | 
         | 
   984 	  n=F.tail(e);  | 
         | 
   985 	  if (residual_capacity[e]==augment_value)   | 
         | 
   986 	    F.erase(e);   | 
         | 
   987 	  else   | 
         | 
   988 	    residual_capacity.set(e, residual_capacity[e]-augment_value);  | 
         | 
   989 	}  | 
         | 
   990       }  | 
         | 
   991 	  | 
         | 
   992     }  | 
         | 
   993               | 
         | 
   994     return _augment;  | 
         | 
   995   }  | 
         | 
   996   | 
         | 
   997   | 
         | 
   998   | 
         | 
   999   | 
         | 
  1000   | 
         | 
  1001   | 
         | 
  1002   template <typename Graph, typename Num, typename CapMap, typename FlowMap>  | 
         | 
  1003   bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow2()   | 
         | 
  1004   { | 
         | 
  1005     bool _augment=false;  | 
         | 
  1006   | 
         | 
  1007     ResGW res_graph(*g, *capacity, *flow);  | 
         | 
  1008         | 
         | 
  1009     //ReachedMap level(res_graph);  | 
         | 
  1010     FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);  | 
         | 
  1011     BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);  | 
         | 
  1012   | 
         | 
  1013     bfs.pushAndSetReached(s);  | 
         | 
  1014     DistanceMap<ResGW> dist(res_graph);  | 
         | 
  1015     while ( !bfs.finished() ) {  | 
         | 
  1016       ResGWOutEdgeIt e=bfs;  | 
         | 
  1017       if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) { | 
         | 
  1018 	dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1);  | 
         | 
  1019       }  | 
         | 
  1020       ++bfs;  | 
         | 
  1021     } //computing distances from s in the residual graph  | 
         | 
  1022   | 
         | 
  1023       //Subgraph containing the edges on some shortest paths  | 
         | 
  1024     ConstMap<typename ResGW::Node, bool> true_map(true);  | 
         | 
  1025     typedef SubGraphWrapper<ResGW, ConstMap<typename ResGW::Node, bool>,   | 
         | 
  1026       DistanceMap<ResGW> > FilterResGW;  | 
         | 
  1027     FilterResGW filter_res_graph(res_graph, true_map, dist);  | 
         | 
  1028   | 
         | 
  1029     //Subgraph, which is able to delete edges which are already   | 
         | 
  1030     //met by the dfs  | 
         | 
  1031     typename FilterResGW::template NodeMap<typename FilterResGW::OutEdgeIt>   | 
         | 
  1032       first_out_edges(filter_res_graph);  | 
         | 
  1033     typename FilterResGW::NodeIt v;  | 
         | 
  1034     for(filter_res_graph.first(v); filter_res_graph.valid(v);   | 
         | 
  1035 	filter_res_graph.next(v))   | 
         | 
  1036       { | 
         | 
  1037  	typename FilterResGW::OutEdgeIt e;  | 
         | 
  1038  	filter_res_graph.first(e, v);  | 
         | 
  1039  	first_out_edges.set(v, e);  | 
         | 
  1040       }  | 
         | 
  1041     typedef ErasingFirstGraphWrapper<FilterResGW, typename FilterResGW::  | 
         | 
  1042       template NodeMap<typename FilterResGW::OutEdgeIt> > ErasingResGW;  | 
         | 
  1043     ErasingResGW erasing_res_graph(filter_res_graph, first_out_edges);  | 
         | 
  1044   | 
         | 
  1045     bool __augment=true;  | 
         | 
  1046   | 
         | 
  1047     while (__augment) { | 
         | 
  1048   | 
         | 
  1049       __augment=false;  | 
         | 
  1050       //computing blocking flow with dfs  | 
         | 
  1051       DfsIterator< ErasingResGW,   | 
         | 
  1052 	typename ErasingResGW::template NodeMap<bool> >   | 
         | 
  1053 	dfs(erasing_res_graph);  | 
         | 
  1054       typename ErasingResGW::  | 
         | 
  1055 	template NodeMap<typename ErasingResGW::OutEdgeIt>   | 
         | 
  1056 	pred(erasing_res_graph);   | 
         | 
  1057       pred.set(s, INVALID);  | 
         | 
  1058       //invalid iterators for sources  | 
         | 
  1059   | 
         | 
  1060       typename ErasingResGW::template NodeMap<Num>   | 
         | 
  1061 	free1(erasing_res_graph);  | 
         | 
  1062   | 
         | 
  1063       dfs.pushAndSetReached(  | 
         | 
  1064 			    typename ErasingResGW::Node(  | 
         | 
  1065 							typename FilterResGW::Node(  | 
         | 
  1066 										   typename ResGW::Node(s)  | 
         | 
  1067 										   )  | 
         | 
  1068 							)  | 
         | 
  1069 			    );  | 
         | 
  1070       while (!dfs.finished()) { | 
         | 
  1071 	++dfs;  | 
         | 
  1072 	if (erasing_res_graph.valid(  | 
         | 
  1073 				    typename ErasingResGW::OutEdgeIt(dfs)))   | 
         | 
  1074  	  {  | 
         | 
  1075   	    if (dfs.isBNodeNewlyReached()) { | 
         | 
  1076 	    | 
         | 
  1077  	      typename ErasingResGW::Node v=erasing_res_graph.aNode(dfs);  | 
         | 
  1078  	      typename ErasingResGW::Node w=erasing_res_graph.bNode(dfs);  | 
         | 
  1079   | 
         | 
  1080  	      pred.set(w, /*typename ErasingResGW::OutEdgeIt*/(dfs));  | 
         | 
  1081  	      if (erasing_res_graph.valid(pred[v])) { | 
         | 
  1082  		free1.set(w, std::min(free1[v], res_graph.resCap(  | 
         | 
  1083 								 typename ErasingResGW::OutEdgeIt(dfs))));  | 
         | 
  1084  	      } else { | 
         | 
  1085  		free1.set(w, res_graph.resCap(  | 
         | 
  1086 					      typename ErasingResGW::OutEdgeIt(dfs)));   | 
         | 
  1087  	      }  | 
         | 
  1088 	        | 
         | 
  1089  	      if (w==t) {  | 
         | 
  1090  		__augment=true;   | 
         | 
  1091  		_augment=true;  | 
         | 
  1092  		break;   | 
         | 
  1093  	      }  | 
         | 
  1094  	    } else { | 
         | 
  1095  	      erasing_res_graph.erase(dfs);  | 
         | 
  1096 	    }  | 
         | 
  1097 	  }  | 
         | 
  1098       }	  | 
         | 
  1099   | 
         | 
  1100       if (__augment) { | 
         | 
  1101 	typename ErasingResGW::Node n=typename FilterResGW::Node(typename ResGW::Node(t));  | 
         | 
  1102 	// 	  typename ResGW::NodeMap<Num> a(res_graph);  | 
         | 
  1103 	// 	  typename ResGW::Node b;  | 
         | 
  1104 	// 	  Num j=a[b];  | 
         | 
  1105 	// 	  typename FilterResGW::NodeMap<Num> a1(filter_res_graph);  | 
         | 
  1106 	// 	  typename FilterResGW::Node b1;  | 
         | 
  1107 	// 	  Num j1=a1[b1];  | 
         | 
  1108 	// 	  typename ErasingResGW::NodeMap<Num> a2(erasing_res_graph);  | 
         | 
  1109 	// 	  typename ErasingResGW::Node b2;  | 
         | 
  1110 	// 	  Num j2=a2[b2];  | 
         | 
  1111 	Num augment_value=free1[n];  | 
         | 
  1112 	while (erasing_res_graph.valid(pred[n])) {  | 
         | 
  1113 	  typename ErasingResGW::OutEdgeIt e=pred[n];  | 
         | 
  1114 	  res_graph.augment(e, augment_value);  | 
         | 
  1115 	  n=erasing_res_graph.tail(e);  | 
         | 
  1116 	  if (res_graph.resCap(e)==0)  | 
         | 
  1117 	    erasing_res_graph.erase(e);  | 
         | 
  1118 	}  | 
         | 
  1119       }  | 
         | 
  1120         | 
         | 
  1121     } //while (__augment)   | 
         | 
  1122               | 
         | 
  1123     return _augment;  | 
         | 
  1124   }  | 
         | 
  1125   | 
         | 
  1126   | 
         | 
  1127   | 
         | 
  1128   /// @}  | 
         | 
  1129     | 
         | 
  1130 } //END OF NAMESPACE HUGO  | 
         | 
  1131   | 
         | 
  1132 #endif //HUGO_MAX_FLOW_H  | 
         | 
  1133   | 
         | 
  1134   | 
         | 
  1135   | 
         | 
  1136   |