equal
  deleted
  inserted
  replaced
  
    
    
    11 This simple map assigns \f$\pi\f$ to each edge.  | 
    11 This simple map assigns \f$\pi\f$ to each edge.  | 
    12   | 
    12   | 
    13 \code  | 
    13 \code  | 
    14 class MyMap   | 
    14 class MyMap   | 
    15 { | 
    15 { | 
    16   double get(Graph::EdgeIt e) const { return M_PI;} | 
         | 
    17 };  | 
         | 
    18 \endcode  | 
         | 
    19   | 
         | 
    20 Or if we accept the new map style, it will look like this:  | 
         | 
    21   | 
         | 
    22 \code  | 
         | 
    23 class MyMap   | 
         | 
    24 { | 
         | 
    25   double operator[](Graph::EdgeIt e) const { return 1;} | 
    16   double operator[](Graph::EdgeIt e) const { return 1;} | 
    26 };  | 
    17 };  | 
    27 \endcode  | 
    18 \endcode  | 
    28   | 
    19   | 
    29   | 
    20   | 
    30 A more complex example  | 
    21 Here is a more complex example. It provides a length function which is obtained  | 
         | 
    22 from a base length function modified by a potential difference.  | 
         | 
    23 \todo Please improve on the english.   | 
    31   | 
    24   | 
    32 \code  | 
    25 \code  | 
    33 class MyLengthMap   | 
    26 class MyLengthMap   | 
    34 { | 
    27 { | 
    35   const Graph::EdgeMap &ol;  | 
    28   const Graph::EdgeMap &ol;  | 
    36   const Graph::NodeMap &pot;  | 
    29   const Graph::NodeMap &pot;  | 
    37     | 
    30     | 
    38   double get(Graph::EdgeIt e) const { return ol.get(e)-pot.get(v)-pot.get(u);} | 
    31   double operator[](Graph::EdgeIt e) const { | 
         | 
    32     return ol.get(e)-pot.get(v)-pot.get(u);  | 
         | 
    33   }  | 
    39     | 
    34     | 
    40   MyComplexMap(const Graph::EdgeMap &o,const Graph::NodeMap &p) :  | 
    35   MyComplexMap(const Graph::EdgeMap &o,const Graph::NodeMap &p) :  | 
    41     ol(o), pot(p);  | 
    36     ol(o), pot(p);  | 
    42 };  | 
    37 };  | 
    43 \endcode  | 
    38 \endcode  |