|
1 // -*- mode:C++ -*- |
|
2 |
|
3 #include<math.h> |
|
4 #include<hugo/list_graph.h> |
|
5 #include<hugo/smart_graph.h> |
|
6 #include<hugo/dijkstra.h> |
|
7 #include<hugo/time_measure.h> |
|
8 #include<iostream> |
|
9 #include<../work/jacint/max_flow.h> |
|
10 |
|
11 using namespace std; |
|
12 using namespace hugo; |
|
13 |
|
14 ///An experimental typedef factory |
|
15 #define GRAPH_TYPEDEF_FACTORY(Graph) \ |
|
16 typedef typename Graph:: Node Node;\ |
|
17 typedef typename Graph:: NodeIt NodeIn;\ |
|
18 typedef typename Graph:: Edge Edge;\ |
|
19 typedef typename Graph:: EdgeIt EdgeIt;\ |
|
20 typedef typename Graph:: InEdgeIt InEdgeIt;\ |
|
21 typedef typename Graph::OutEdgeIt OutEdgeIt; |
|
22 |
|
23 #define GRAPH_TYPEDEF_FACTORY_NOTYPENAME(Graph) \ |
|
24 typedef Graph:: Node Node;\ |
|
25 typedef Graph:: NodeIt NodeIn;\ |
|
26 typedef Graph:: Edge Edge;\ |
|
27 typedef Graph:: EdgeIt EdgeIt;\ |
|
28 typedef Graph:: InEdgeIt InEdgeIt;\ |
|
29 typedef Graph::OutEdgeIt OutEdgeIt; |
|
30 |
|
31 |
|
32 class Primes |
|
33 { |
|
34 vector<int> primes; |
|
35 int n; |
|
36 |
|
37 bool isPrime(int m) |
|
38 { |
|
39 for(int i=0;m<primes[i]*primes[i];i++) if(!(m%primes[i])) return false; |
|
40 return true; |
|
41 } |
|
42 public: |
|
43 Primes() : n(1) {} |
|
44 |
|
45 int operator() () |
|
46 { |
|
47 if(primes.size()==0) { |
|
48 primes.push_back(2); |
|
49 return 2; |
|
50 } |
|
51 else { |
|
52 do n+=2; while(!isPrime(n)); |
|
53 primes.push_back(n); |
|
54 return n; |
|
55 } |
|
56 } |
|
57 }; |
|
58 |
|
59 template<class Graph> |
|
60 void addHiperCube(Graph &G,int dim,vector<typename Graph::Node> &nodes) |
|
61 { |
|
62 GRAPH_TYPEDEF_FACTORY(Graph); |
|
63 |
|
64 vector<int> bits(dim+1); |
|
65 bits[0]=1; |
|
66 for(int i=1;i<=dim;i++) bits[i]=2*bits[i-1]; |
|
67 |
|
68 for(int i=0;i<bits[dim];i++) { |
|
69 nodes.push_back(G.addNode()); |
|
70 for(j=0;j<dim;j++) if(i&bits[j]) G.addEdge(nodes[i-bits[j]],nodes[i]); |
|
71 } |
|
72 } |
|
73 |
|
74 template<class Graph> |
|
75 void addBiDirHiperCube(Graph &G,int dim,vector<typename Graph::Node> &nodes) |
|
76 { |
|
77 GRAPH_TYPEDEF_FACTORY(Graph); |
|
78 |
|
79 vector<int> bits(dim+1); |
|
80 bits[0]=1; |
|
81 for(int i=1;i<=dim;i++) bits[i]=2*bits[i-1]; |
|
82 |
|
83 for(int i=0;i<bits[dim];i++) { |
|
84 nodes.push_back(G.addNode()); |
|
85 for(int j=0;j<dim;j++) if(i&bits[j]) { |
|
86 G.addEdge(nodes[i-bits[j]],nodes[i]); |
|
87 G.addEdge(nodes[i],nodes[i-bits[j]]); |
|
88 } |
|
89 |
|
90 } |
|
91 } |
|
92 |
|
93 int main(int argc, char *argv[]) |
|
94 { |
|
95 // typedef ListGraph Graph; |
|
96 typedef SmartGraph Graph; |
|
97 |
|
98 ///\bug GRAPH_TYPEDEF_FACTORY(Graph); |
|
99 GRAPH_TYPEDEF_FACTORY_NOTYPENAME(Graph); |
|
100 |
|
101 Graph G; |
|
102 |
|
103 Timer T; |
|
104 |
|
105 if(argc!=2) { |
|
106 cout << "Usage: " << argv[0] << " dim\n"; |
|
107 return 1; |
|
108 } |
|
109 |
|
110 int dim=atoi(argv[1]); |
|
111 |
|
112 cout << "Creating Hipercube ("<< (1<<dim) << " nodes, " |
|
113 << dim*(1<<dim) << " edges):"; |
|
114 |
|
115 vector<Node> nodes; |
|
116 addBiDirHiperCube(G,dim,nodes); |
|
117 cout << T; |
|
118 cout << "\nGenerating the lengths: "; |
|
119 T.reset(); |
|
120 Graph::EdgeMap<int> map(G); |
|
121 { |
|
122 Primes P; |
|
123 for(int i=0;i<dim*(1<<dim);i++) P(); |
|
124 |
|
125 // for(EdgeIt e(G);G.valid(e);G.next(e)) map[e]=P(); |
|
126 for(int i=0;i<dim*(1<<dim);i++) |
|
127 // map[Edge(((long long int)(i)*2987)%(dim*(1<<dim)))]=P(); |
|
128 map[Edge(((long long int)(i)*93505)%(dim*(1<<dim)))]=P(); |
|
129 } |
|
130 |
|
131 cout << T; |
|
132 cout << "\nRunning Dijkstra: "; |
|
133 T.reset(); |
|
134 { |
|
135 Dijkstra<Graph> Dij(G,map); |
|
136 Dij.run(nodes[0]); |
|
137 } |
|
138 cout << T; |
|
139 // cout << "\nRunning MaxFlow: "; |
|
140 // T.reset(); |
|
141 // { |
|
142 // Graph::EdgeMap<int> flow(G); |
|
143 |
|
144 // MaxFlow<Graph,int> MF(G,nodes[0],nodes[1<<dim-1],map,flow); |
|
145 // MF.run(MF.NO_FLOW); |
|
146 // } |
|
147 // cout << T; |
|
148 cout << "\n"; |
|
149 } |