2 #ifndef HUGO_MINLENGTHPATHS_H
 
     3 #define HUGO_MINLENGTHPATHS_H
 
     7 ///\brief An algorithm for finding k paths of minimal total length.
 
    11 #include <graph_wrapper.h>
 
    21   ///\brief Implementation of an algorithm for finding k paths between 2 nodes 
 
    22   /// of minimal total length 
 
    24   /// The class \ref hugo::MinLengthPaths "MinLengthPaths" implements
 
    25   /// an algorithm for finding k edge-disjoint paths
 
    26   /// from a given source node to a given target node in an
 
    27   /// edge-weighted directed graph having minimal total weigth (length).
 
    29   ///\author Attila Bernath
 
    30   template <typename Graph, typename LengthMap>
 
    31   class MinLengthPaths {
 
    33     typedef typename LengthMap::ValueType Length;
 
    35     typedef typename Graph::Node Node;
 
    36     typedef typename Graph::NodeIt NodeIt;
 
    37     typedef typename Graph::Edge Edge;
 
    38     typedef typename Graph::OutEdgeIt OutEdgeIt;
 
    39     typedef typename Graph::template EdgeMap<int> EdgeIntMap;
 
    41     typedef ConstMap<Edge,int> ConstMap;
 
    43     typedef ResGraphWrapper<const Graph,int,ConstMap,EdgeIntMap> ResGraphType;
 
    46       typedef typename ResGraphType::template NodeMap<Length> NodeMap;
 
    47       const ResGraphType& G;
 
    48       const EdgeIntMap& rev;
 
    52       typedef typename LengthMap::KeyType KeyType;
 
    53       typedef typename LengthMap::ValueType ValueType;
 
    55       ValueType operator[](typename ResGraphType::Edge e) const {     
 
    56 	//if ( (1-2*rev[e])*ol[e]-(pot[G.head(e)]-pot[G.tail(e)] ) <0 ){
 
    57 	//  std::cout<<"Negative length!!"<<std::endl;
 
    59 	return (1-2*rev[e])*ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);   
 
    62       ModLengthMap(const ResGraphType& _G, const EdgeIntMap& _rev, 
 
    63 		   const LengthMap &o,  const NodeMap &p) : 
 
    64 	G(_G), rev(_rev), ol(o), pot(p){}; 
 
    71     const LengthMap& length;
 
    75     //The value is 1 iff the edge is reversed. 
 
    76     //If the algorithm has finished, the edges of the seeked paths are 
 
    77     //exactly those that are reversed 
 
    80     //Container to store found paths
 
    81     std::vector< std::vector<Edge> > paths;
 
    82     //typedef DirPath<Graph> DPath;
 
    91     MinLengthPaths(Graph& _G, LengthMap& _length) : G(_G), 
 
    92       length(_length), reversed(_G)/*, dijkstra_dist(_G)*/{ }
 
    95     ///Runs the algorithm.
 
    97     ///Runs the algorithm.
 
    98     ///Returns k if there are at least k edge-disjoint paths from s to t.
 
    99     ///Otherwise it returns the number of found edge-disjoint paths from s to t.
 
   100     int run(Node s, Node t, int k) {
 
   101       ConstMap const1map(1);
 
   104       //We need a residual graph, in which some of the edges are reversed
 
   105       ResGraphType res_graph(G, const1map, reversed);
 
   107       //Initialize the copy of the Dijkstra potential to zero
 
   108       typename ResGraphType::template NodeMap<Length> dijkstra_dist(res_graph);
 
   109       ModLengthMap mod_length(res_graph, reversed, length, dijkstra_dist);
 
   111       Dijkstra<ResGraphType, ModLengthMap> dijkstra(res_graph, mod_length);
 
   116 	if (!dijkstra.reached(t)){
 
   117 	  //There are no k paths from s to t
 
   122 	  //We have to copy the potential
 
   123 	  typename ResGraphType::NodeIt n;
 
   124 	  for ( res_graph.first(n) ; res_graph.valid(n) ; res_graph.next(n) ) {
 
   125 	      dijkstra_dist[n] += dijkstra.distMap()[n];
 
   130 	//Reversing the sortest path
 
   134 	  e = dijkstra.pred(n);
 
   135 	  n = dijkstra.predNode(n);
 
   136 	  reversed[e] = 1-reversed[e];
 
   142       //Let's find the paths
 
   143       //We put the paths into stl vectors (as an inner representation). 
 
   144       //In the meantime we lose the information stored in 'reversed'.
 
   145       //We suppose the lengths to be positive now.
 
   147       //Meanwhile we put the total length of the found paths 
 
   148       //in the member variable total_length
 
   152       for (int j=0; j<i; ++j){
 
   161 	  while (!reversed[e]){
 
   165 	  paths[j].push_back(e);
 
   166 	  total_length += length[e];
 
   167 	  reversed[e] = 1-reversed[e];
 
   175     ///This function gives back the total length of the found paths.
 
   176     ///Assumes that \c run() has been run and nothing changed since then.
 
   177     Length totalLength(){
 
   181     ///This function gives back the \c j-th path in argument p.
 
   182     ///Assumes that \c run() has been run and nothing changed since then.
 
   183     /// \warning It is assumed that \c p is constructed to be a path of graph \c G. If \c j is greater than the result of previous \c run, then the result here will be an empty path.
 
   184     template<typename DirPath>
 
   185     void getPath(DirPath& p, int j){
 
   187       typename DirPath::Builder B(p);
 
   188       for(typename std::vector<Edge>::iterator i=paths[j].begin(); 
 
   189 	  i!=paths[j].end(); ++i ){
 
   196   }; //class MinLengthPaths
 
   202 #endif //HUGO_MINLENGTHPATHS_H