To run graph-displayer with sample input, type make run, but do not move the nodes, YET
     1 @node The Full Feature Graph Class
 
     2 @section The Full Feature Graph Class
 
     3 @cindex Full Feature Graph Class
 
     5 This section describes what an imaginary full feature graph class knows.
 
     6 The set of features provided by a real graph implementation is typically
 
     7 a subset of the features below.
 
     9 On the other hand, each graph algorithm requires the underlying graph
 
    10 structure to provide a certain (typically small) set of features in order
 
    13 @subsection Declaration
 
    15 @deftp {Class} {class Graph}
 
    16 @code{Graph} is the imaginary @emph{full feature graph class}.
 
    17 @code{G} denotes the instance of this class in the exaples below.
 
    18 @c Each node and edge has a user defined data sturcure
 
    19 @c @var{N} and @var{E} statically attached to it.
 
    24 @c @deftp {Type} Graph::NodeType
 
    25 @c @deftpx {Type} Graph::EdgeType
 
    26 @c The type of the data stored statically for each node and edge.
 
    29 @anchor{Graph-NodeIterator}
 
    30 @deftp {Type} Graph::NodeIt
 
    31 @c @deftpx {Type} Graph::NodeIterator
 
    32 These types points a node uniquely. The difference between the
 
    33 @code{NodeIt} and the @code{NodeIterator} is that @code{NodeIt}
 
    34 requires the graph structure itself for most of the operations.
 
    35 For examples using iterators you can go through all nodes as follows.
 
    40 for(Graph::NodeIterator n(G);n.valid();++n) ++nodenum;
 
    43 Using @code{NodeIt} the last line looks like this.
 
    46 for(Graph::NodeIt n(G);n.valid();n=G.next(n)) ++nodenum;
 
    53 for(G.getFirst(n);G.valid(n);G.goNext(n)) ++nodenum;
 
    58 @deftp {Type} Graph::EdgeIt
 
    59 @deftpx {Type} Graph::InEdgeIt
 
    60 @deftpx {Type} Graph::OutEdgeIt
 
    61 @deftpx {Type} Graph::EachEdgeIt
 
    62 @c @deftpx {Type} Graph::BiEdgeIt
 
    63 @c @deftpx {Type} Graph::SymEdgeIt
 
    64 Each of these types points an edge uniquely. The difference between the
 
    66 @c @mref{Graph-NodeIterator,@code{EdgeIterator}}
 
    67 @mref{Graph-NodeIterator , EdgeIterator}
 
    69 @code{EdgeIt} requires the graph structure itself for most of the
 
    73 @anchor{Graph-EdgeIterator}
 
    74 @c @deftp {Type} Graph::EdgeIterator
 
    75 @c @deftpx {Type} Graph::InEdgeIterator
 
    76 @c @deftpx {Type} Graph::OutEdgeIterator
 
    77 @c @deftpx {Type} Graph::BiEdgeIterator
 
    78 @c @deftpx {Type} Graph::SymEdgeIterator
 
    79 @c @deftpx {Type} Graph::EachEdgeIterator
 
    80 @c Each of these types points an edge uniquely. The difference between the
 
    81 @c @code{EdgeIt} and the @code{EdgeIterator} series is that
 
    82 @c @code{EdgeIt} requires the graph structure itself for most of the
 
    85 @c For the @code{EdgeIterator} types you can use operator @code{++}
 
    86 @c (both the prefix and the posfix one) to obtain the next edge.
 
    89 @deftp {Type} Graph::NodeMap<typename T>
 
    90 @deftpx {Type} Graph::EdgeMap<typename T>
 
    91 There are the default property maps for the edges and the nodes.
 
    94 @deftp {Type} Graph::DynNodeMap<typename T>
 
    95 @deftpx {Type} Graph::DynEdgeMap<typename T>
 
    96 There are the default @emph{dynamic} property maps for the edges and the nodes.
 
    99 @subsection Member Functions
 
   101 @subsubsection Constructors
 
   103 @deftypefun { } Graph::Graph ()
 
   104 The default constructor.
 
   107 @c @deftypefun { } Graph::Graph (Graph@tie{}&)
 
   108 @deftypefun { } Graph::Graph (Graph &)
 
   109 The copy constructor.
 
   112 @subsubsection Graph Maintenence Operations
 
   114 @deftypefun NodeIt Graph::addNode ()
 
   115 Adds a new node to the graph and returns a @code{NodeIt} pointing to it.
 
   118 @deftypefun EdgeIt Graph::addEdge (@w{const @mref{Graph-NodeIterator,NodeIt} @var{from}}, @w{const @mref{Graph-NodeIterator,NodeIt} @var{to}})
 
   119 Adds a new edge with tail @var{from} and head @var{to} to the graph
 
   120 and returns an @code{EdgeIt} pointing to it.
 
   123 @deftypefun void Graph::delete (@w{const @mref{Graph-NodeIterator,NodeIt} @var{n}})
 
   124 Deletes the node @var{n}. It also deletes the adjacent edges.
 
   127 @deftypefun void Graph::delete (@w{const @mref{Graph-EdgeIterator,EdgeIt} @var{e}})
 
   128 Deletes the edge @var{n}.
 
   131 @deftypefun void Graph::clear ()
 
   132 Deletes all edges and nodes from the graph.
 
   135 @deftypefun int Graph::nodeNum ()
 
   136 Returns the number of the nodes in the graph.
 
   137 ??? Is it necessary???
 
   140 @subsubsection NodeIt Operations
 
   142 @deftypefun NodeIt Graph::getFirst (NodeIt &@var{n}) const
 
   143 @deftypefunx NodeIt Graph::getNext (NodeIt @var{n}) const
 
   144 @deftypefunx {NodeIt &} Graph::next (NodeIt &@var{n})
 
   145 The nodes in the graph forms a list. @code{getFirst(n)} sets @var{n} to
 
   146 be the first node. @code{getNext(n)} gives back the subsequent
 
   147 node. @code{next(n)} is equivalent to @code{n=getNext(n)}, though it
 
   148 might be faster.  ??? What should be the return value ???
 
   151 @deftypefun bool Graph::valid (NodeIt &@var{e})
 
   152 @c @deftypefunx bool NodeIt::valid ()
 
   153 These functions check if and NodeIt is valid or not.
 
   154 @c ??? Which one should be implemented ???
 
   157 @subsubsection EdgeIt Operations
 
   159 @deftypefun EachEdgeIt Graph::getFirst (const EachEdgeIt & @var{e}) const
 
   160 @deftypefunx EachEdgeIt Graph::getNext (EachEdgeIt @var{n}) const
 
   161 @deftypefunx {EachEdgeIt &} Graph::next (EachEdgeIt &@var{n})
 
   162 With these functions you can go though all the edges of the graph.
 
   163 @c ??? What should be the return value ???
 
   166 @deftypefun InEdgeIt &Graph::getFirst (InEdgeIt & @var{e}, const NodeIt @var{n})
 
   167 @deftypefunx OutEdgeIt &Graph::getFirst (OutEdgeIt & @var{e}, const NodeIt @var{n})
 
   168 @c @deftypefunx SymEdgeIt &Graph::getFirst (SymEdgeIt & @var{e}, const NodeIt @var{n})
 
   169 The edges leaving from
 
   174 list.  These functions give back the first elements of these
 
   175 lists. The exact behavior depends on the type of @var{e}.
 
   177 If @var{e} is an @code{InEdgeIt} or an @code{OutEdgeIt} then
 
   178 @code{getFirst} sets @var{e} to be the first incoming or outgoing edge
 
   179 of the node @var{n}, respectively.
 
   181 @c If @var{e} is a @code{SymEdgeIt} then
 
   182 @c @code{getFirst} sets @var{e} to be the first incoming if there exists one
 
   183 @c otherwise the first outgoing edge.
 
   185 If there are no such edges, @var{e} will be invalid.
 
   189 @deftypefun InEdgeIt Graph::next (const InEdgeIt @var{e})
 
   190 @deftypefunx OutEdgeIt Graph::next (const OutEdgeIt @var{e})
 
   191 @deftypefunx SymEdgeIt Graph::next (const SymEdgeIt @var{e})
 
   192 These functions give back the edge that follows @var{e}
 
   195 @deftypefun {InEdgeIt &} Graph::goNext (InEdgeIt &@var{e})
 
   196 @deftypefunx {OutEdgeIt &} Graph::goNext (OutEdgeIt &@var{e})
 
   197 @deftypefunx {SymEdgeIt &} Graph::goNext (SymEdgeIt &@var{e})
 
   198 @code{G.goNext(e)} is equivalent to @code{e=G.next(e)}, though it
 
   200 ??? What should be the return value ???
 
   203 @deftypefun bool Graph::valid (EdgeIt &@var{e})
 
   204 @deftypefunx bool EdgeIt::valid ()
 
   205 These functions check if and EdgeIt is valid or not.
 
   206 ??? Which one should be implemented ???
 
   209 @deftypefun NodeIt Graph::tail (const EdgeIt @var{e})
 
   210 @deftypefunx NodeIt Graph::head (const EdgeIt @var{e})
 
   211 @deftypefunx NodeIt Graph::aNode (const InEdgeIt @var{e})
 
   212 @deftypefunx NodeIt Graph::aNode (const OutEdgeIt @var{e})
 
   213 @deftypefunx NodeIt Graph::aNode (const SymEdgeIt @var{e})
 
   214 @deftypefunx NodeIt Graph::bNode (const InEdgeIt @var{e})
 
   215 @deftypefunx NodeIt Graph::bNode (const OutEdgeIt @var{e})
 
   216 @deftypefunx NodeIt Graph::bNode (const SymEdgeIt @var{e})
 
   217 There queries give back the two endpoints of the edge @var{e}.  For a
 
   218 directed edge @var{e}, @code{tail(e)} and @code{head(e)} is its tail and
 
   219 its head, respectively. For an undirected @var{e}, they are two
 
   220 endpoints, but you should not rely on which end is which.
 
   222 @code{aNode(e)} is the node which @var{e} is bounded to, i.e. it is
 
   223 equal to @code{tail(e)} if @var{e} is an @code{OutEdgeIt} and
 
   224 @code{head(e)} if @var{e} is an @code{InEdgeIt}. If @var{e} is a
 
   225 @code{SymEdgeIt} and it or its first preceding edge was created by
 
   226 @code{getFirst(e,n)}, then @code{aNode(e)} is equal to @var{n}.
 
   228 @code{bNode(e)} is the other end of the edge.
 
   230 @deftypefun void Graph::setInvalid (EdgeIt &@var{e})
 
   231 @deftypefunx void Graph::setInvalid (EdgeIt &@var{e})
 
   232 These functions set the corresponding iterator to be invalid.
 
   235 @c ???It is implemented in an other way now. (Member function <-> Graph global)???
 
   240 @c @deftypevar int from
 
   241 @c  the tail of the created edge.