2 #ifndef HUGO_UNION_FIND_H
 
     3 #define HUGO_UNION_FIND_H
 
     7 //!\brief Union-Find data structures.
 
    15 #include <hugo/invalid.h>
 
    19   //! \addtogroup auxdat
 
    23    * \brief A \e Union-Find data structure implementation
 
    25    * The class implements the \e Union-Find data structure. 
 
    26    * The union operation uses rank heuristic, while
 
    27    * the find operation uses path compresson.
 
    28    * This is a very simple but efficient implementation, providing 
 
    29    * only four methods: join (union), find, insert and size.
 
    30    * For more features see the \ref UnionFindEnum class.
 
    32    * \pre The elements are automatically added only if the map 
 
    33    * given to the constructor was filled with -1's. Otherwise you
 
    34    * need to add all the elements by the \ref insert() method.
 
    37   template <typename T, typename TIntMap>
 
    41     typedef T ElementType;
 
    42     typedef std::pair<int,int> PairType;
 
    45     std::vector<PairType> data;
 
    49     UnionFind(TIntMap& m) : map(m) {}
 
    52      * \brief Returns the index of the element's component.
 
    54      * The method returns the index of the element's component.
 
    55      * This is an integer between zero and the number of inserted elements.
 
    66       while ( (next = data[comp].first) != comp) {
 
    69       while ( (next = data[comp0].first) != comp) {
 
    70 	data[comp0].first = comp;
 
    78      * \brief Insert a new element into the structure.
 
    80      * This method inserts a new element into the data structure. 
 
    82      * It is not required to use this method:
 
    83      * if the map given to the constructor was filled 
 
    84      * with -1's then it is called automatically
 
    85      * on the first \ref find or \ref join.
 
    87      * The method returns the index of the new component.
 
    93       data.push_back(std::make_pair(n, 1));
 
    99      * \brief Joining the components of element \e a and element \e b.
 
   101      * This is the \e union operation of the Union-Find structure. 
 
   102      * Joins the component of elemenent \e a and component of
 
   103      * element \e b. If \e a and \e b are in the same component then
 
   104      * it returns false otherwise it returns true.
 
   115       if ( data[ca].second > data[cb].second ) {
 
   117 	data[ca].second += data[cb].second;
 
   121 	data[cb].second += data[ca].second;
 
   127      * \brief Returns the size of the component of element \e a.
 
   129      * Returns the size of the component of element \e a.
 
   135       return data[ca].second;
 
   143   /*******************************************************/
 
   146 #ifdef DEVELOPMENT_DOCS
 
   149    * \brief The auxiliary class for the \ref UnionFindEnum class.
 
   151    * In the \ref UnionFindEnum class all components are represented as
 
   153    * Items of these lists are UnionFindEnumItem structures.
 
   155    * The class has four fields:
 
   156    *  - T me - the actual element 
 
   157    *  - IIter parent - the parent of the element in the union-find structure
 
   158    *  - int size - the size of the component of the element. 
 
   159    *            Only valid if the element
 
   160    *            is the leader of the component.
 
   161    *  - CIter my_class - pointer into the list of components 
 
   162    *            pointing to the component of the element.
 
   163    *            Only valid if the element is the leader of the component.
 
   168   template <typename T>
 
   169   struct UnionFindEnumItem {
 
   171     typedef std::list<UnionFindEnumItem> ItemList;
 
   172     typedef std::list<ItemList> ClassList;
 
   173     typedef typename ItemList::iterator IIter;
 
   174     typedef typename ClassList::iterator CIter;
 
   181     UnionFindEnumItem() {}
 
   182     UnionFindEnumItem(const T &_me, CIter _my_class): 
 
   183       me(_me), size(1), my_class(_my_class) {}
 
   188    * \brief A \e Union-Find data structure implementation which
 
   189    * is able to enumerate the components.
 
   191    * The class implements an \e Union-Find data structure
 
   192    * which is able to enumerate the components and the items in
 
   193    * a component. If you don't need this feature then perhaps it's
 
   194    * better to use the \ref UnionFind class which is more efficient.
 
   196    * The union operation uses rank heuristic, while
 
   197    * the find operation uses path compresson.
 
   200    * need to add all the elements by the \ref insert() method.
 
   204   template <typename T, template <typename Item> class Map>
 
   205   class UnionFindEnum {
 
   207     typedef std::list<UnionFindEnumItem<T> > ItemList;
 
   208     typedef std::list<ItemList> ClassList;
 
   209     typedef typename ItemList::iterator IIter;
 
   210     typedef typename ItemList::const_iterator IcIter;
 
   211     typedef typename ClassList::iterator CIter;
 
   212     typedef typename ClassList::const_iterator CcIter;
 
   215     typedef T ElementType;
 
   216     typedef UnionFindEnumItem<T> ItemType;
 
   217     typedef Map< IIter > MapType;
 
   223     IIter _find(IIter a) const {
 
   226       while( (next = comp->parent) != comp ) {
 
   231       while( (next = comp1->parent) != comp ) {
 
   232 	comp1->parent = comp->parent;
 
   239     UnionFindEnum(MapType& _m) : m(_m) {}
 
   243      * \brief Insert the given element into a new component.
 
   245      * This method creates a new component consisting only of the
 
   249     void insert(const T &a)
 
   253       classes.push_back(ItemList());
 
   254       CIter aclass = classes.end();
 
   257       ItemList &alist = *aclass;
 
   258       alist.push_back(ItemType(a, aclass));
 
   259       IIter ai = alist.begin();
 
   267      * \brief Insert the given element into the component of the others.
 
   269      * This methods insert the element \e a into the component of the
 
   273     void insert(const T &a, const T &comp) {
 
   275       IIter clit = _find(m[comp]);
 
   276       ItemList &c = *clit->my_class;
 
   277       c.push_back(ItemType(a,0));
 
   287      * \brief Find the leader of the component of the given element.
 
   289      * The method returns the leader of the component of the given element.
 
   292     T find(const T &a) const {
 
   293       return _find(m[a])->me;
 
   298      * \brief Joining the component of element \e a and element \e b.
 
   300      * This is the \e union operation of the Union-Find structure. 
 
   301      * Joins the component of elemenent \e a and component of
 
   302      * element \e b. If \e a and \e b are in the same component then
 
   303      * returns false else returns true.
 
   306     bool join(T a, T b) {
 
   308       IIter ca = _find(m[a]);
 
   309       IIter cb = _find(m[b]);
 
   315       if ( ca->size > cb->size ) {
 
   317 	cb->parent = ca->parent;
 
   318 	ca->size += cb->size;
 
   320 	ItemList &alist = *ca->my_class;
 
   321 	alist.splice(alist.end(),*cb->my_class);
 
   323 	classes.erase(cb->my_class);
 
   328 	ca->parent = cb->parent;
 
   329 	cb->size += ca->size;
 
   331 	ItemList &blist = *cb->my_class;
 
   332 	blist.splice(blist.end(),*ca->my_class);
 
   334 	classes.erase(ca->my_class);
 
   343      * \brief Returns the size of the component of element \e a.
 
   345      * Returns the size of the component of element \e a.
 
   348     int size(const T &a) const {
 
   349       return _find(m[a])->size;
 
   354      * \brief Split up the component of the element. 
 
   356      * Splitting the component of the element into sigleton
 
   357      * components (component of size one).
 
   360     void split(const T &a) {
 
   362       IIter ca = _find(m[a]);
 
   367       CIter aclass = ca->my_class;
 
   369       for(IIter curr = ca; ++curr != aclass->end(); curr=ca) {
 
   370 	classes.push_back(ItemList());
 
   371 	CIter nl = --classes.end();
 
   372 	nl->splice(nl->end(), *aclass, curr);
 
   385      * \brief Set the given element to the leader element of its component.
 
   387      * Set the given element to the leader element of its component.
 
   390     void makeRep(const T &a) {
 
   393       IIter la = _find(ia);
 
   394       if (la == ia) return;
 
   396       ia->my_class = la->my_class;
 
   401       CIter l = ia->my_class;
 
   402       l->splice(l->begin(),*l,ia);
 
   409      * \brief Move the given element to an other component.
 
   411      * This method moves the element \e a from its component
 
   412      * to the component of \e comp.
 
   413      * If \e a and \e comp are in the same component then
 
   414      * it returns false otherwise it returns true.
 
   417     bool move(const T &a, const T &comp) {
 
   420       IIter lai = _find(ai);
 
   421       IIter clit = _find(m[comp]);
 
   426       ItemList &c = *clit->my_class;
 
   428       bool is_leader = (lai == ai);
 
   429       bool singleton = false;
 
   435       c.splice(c.end(), *lai->my_class, ai);
 
   439 	  classes.erase(ai->my_class);
 
   443 	  lai->size = ai->size; 
 
   444 	  lai->my_class = ai->my_class;	
 
   448 	for (IIter i = lai; i != lai->my_class->end(); ++i)
 
   462      * \brief Remove the given element from the structure.
 
   464      * Remove the given element from the structure.
 
   466      * Removes the element from its component and if the component becomes
 
   467      * empty then removes that component from the component list.
 
   469     void erase(const T &a) {
 
   474       IIter la = _find(ma);
 
   476 	if (ma -> size == 1){
 
   477 	  classes.erase(ma->my_class);
 
   483 	la->my_class = ma->my_class;	
 
   486       for (IIter i = la; i != la->my_class->end(); ++i) {
 
   491       la->my_class->erase(ma);
 
   496      * \brief Removes the component of the given element from the structure.
 
   498      * Removes the component of the given element from the structure.
 
   501     void eraseClass(const T &a) {
 
   505       CIter c = _find(ma)->my_class;
 
   506       for (IIter i=c->begin(); i!=c->end(); ++i)
 
   509       classes.erase(_find(ma)->my_class);
 
   514       friend class UnionFindEnum;
 
   518       ClassIt(Invalid): i(0) {}
 
   521       operator const T& () const { 
 
   522 	ItemList const &ll = *i;
 
   523 	return (ll.begin())->me; }
 
   524       bool operator == (ClassIt it) const {
 
   527       bool operator != (ClassIt it) const {
 
   530       bool operator < (ClassIt it) const {
 
   534       bool valid() const { return i != 0; }
 
   536       void first(const ClassList &l) { i = l.begin(); validate(l); }
 
   537       void next(const ClassList &l) {
 
   541       void validate(const ClassList &l) {
 
   548      * \brief Sets the iterator to point to the first component.
 
   550      * Sets the iterator to point to the first component.
 
   552      * With the \ref first, \ref valid and \ref next methods you can
 
   553      * iterate through the components. For example:
 
   555      * UnionFindEnum<Graph::Node, Graph::NodeMap>::MapType map(G);
 
   556      * UnionFindEnum<Graph::Node, Graph::NodeMap> U(map);
 
   557      * UnionFindEnum<Graph::Node, Graph::NodeMap>::ClassIt iter;
 
   558      *  for (U.first(iter); U.valid(iter); U.next(iter)) {
 
   559      *    // iter is convertible to Graph::Node
 
   560      *    cout << iter << endl;
 
   565     ClassIt& first(ClassIt& it) const {
 
   571      * \brief Returns whether the iterator is valid.
 
   573      * Returns whether the iterator is valid.
 
   575      * With the \ref first, \ref valid and \ref next methods you can
 
   576      * iterate through the components. See the example here: \ref first.
 
   579     bool valid(ClassIt const &it) const {
 
   584      * \brief Steps the iterator to the next component. 
 
   586      * Steps the iterator to the next component.
 
   588      * With the \ref first, \ref valid and \ref next methods you can
 
   589      * iterate through the components. See the example here: \ref first.
 
   592     ClassIt& next(ClassIt& it) const {
 
   599       friend class UnionFindEnum;
 
   604       ItemIt(Invalid): i(0) {}
 
   607       operator const T& () const { return i->me; }
 
   608       bool operator == (ItemIt it) const {
 
   611       bool operator != (ItemIt it) const {
 
   614       bool operator < (ItemIt it) const {
 
   618       bool valid() const { return i != 0; }
 
   620       void first(const ItemList &il) { l=&il; i = l->begin(); validate(); }
 
   634      * \brief Sets the iterator to point to the first element of the component.
 
   637      * Sets the iterator to point to the first element of the component.
 
   639      * With the \ref first2 "first", \ref valid2 "valid" 
 
   640      * and \ref next2 "next" methods you can
 
   641      * iterate through the elements of a component. For example
 
   642      * (iterating through the component of the node \e node):
 
   644      * Graph::Node node = ...;
 
   645      * UnionFindEnum<Graph::Node, Graph::NodeMap>::MapType map(G);
 
   646      * UnionFindEnum<Graph::Node, Graph::NodeMap> U(map);
 
   647      * UnionFindEnum<Graph::Node, Graph::NodeMap>::ItemIt iiter;
 
   648      *   for (U.first(iiter, node); U.valid(iiter); U.next(iiter)) {
 
   649      *     // iiter is convertible to Graph::Node
 
   650      *     cout << iiter << endl;
 
   655     ItemIt& first(ItemIt& it, const T& a) const {
 
   656       it.first( * _find(m[a])->my_class );
 
   661      * \brief Returns whether the iterator is valid.
 
   664      * Returns whether the iterator is valid.
 
   666      * With the \ref first2 "first", \ref valid2 "valid" 
 
   667      * and \ref next2 "next" methods you can
 
   668      * iterate through the elements of a component.
 
   669      * See the example here: \ref first2 "first".
 
   672     bool valid(ItemIt const &it) const {
 
   677      * \brief Steps the iterator to the next component. 
 
   680      * Steps the iterator to the next component.
 
   682      * With the \ref first2 "first", \ref valid2 "valid" 
 
   683      * and \ref next2 "next" methods you can
 
   684      * iterate through the elements of a component.
 
   685      * See the example here: \ref first2 "first".
 
   688     ItemIt& next(ItemIt& it) const {
 
   700 #endif //HUGO_UNION_FIND_H