2 #ifndef LEMON_MAX_FLOW_H
 
     3 #define LEMON_MAX_FLOW_H
 
     9 #include <lemon/graph_wrapper.h>
 
    11 #include <lemon/invalid.h>
 
    12 #include <lemon/maps.h>
 
    13 #include <lemon/for_each_macros.h>
 
    16 /// \brief Maximum flow algorithms.
 
    23   ///Maximum flow algorithms class.
 
    25   ///This class provides various algorithms for finding a flow of
 
    26   ///maximum value in a directed graph. The \e source node, the \e
 
    27   ///target node, the \e capacity of the edges and the \e starting \e
 
    28   ///flow value of the edges should be passed to the algorithm through the
 
    29   ///constructor. It is possible to change these quantities using the
 
    30   ///functions \ref resetSource, \ref resetTarget, \ref resetCap and
 
    31   ///\ref resetFlow. Before any subsequent runs of any algorithm of
 
    32   ///the class \ref resetFlow should be called. 
 
    34   ///After running an algorithm of the class, the actual flow value 
 
    35   ///can be obtained by calling \ref flowValue(). The minimum
 
    36   ///value cut can be written into a \c node map of \c bools by
 
    37   ///calling \ref minCut. (\ref minMinCut and \ref maxMinCut writes
 
    38   ///the inclusionwise minimum and maximum of the minimum value
 
    40   ///\param Graph The directed graph type the algorithm runs on.
 
    41   ///\param Num The number type of the capacities and the flow values.
 
    42   ///\param CapMap The capacity map type.
 
    43   ///\param FlowMap The flow map type.                                                                                                           
 
    44   ///\author Marton Makai, Jacint Szabo 
 
    45   template <typename Graph, typename Num,
 
    46 	    typename CapMap=typename Graph::template EdgeMap<Num>,
 
    47             typename FlowMap=typename Graph::template EdgeMap<Num> >
 
    50     typedef typename Graph::Node Node;
 
    51     typedef typename Graph::NodeIt NodeIt;
 
    52     typedef typename Graph::EdgeIt EdgeIt;
 
    53     typedef typename Graph::OutEdgeIt OutEdgeIt;
 
    54     typedef typename Graph::InEdgeIt InEdgeIt;
 
    56     typedef typename std::vector<std::stack<Node> > VecStack;
 
    57     typedef typename Graph::template NodeMap<Node> NNMap;
 
    58     typedef typename std::vector<Node> VecNode;
 
    63     const CapMap* capacity;
 
    65     int n;      //the number of nodes of G
 
    66     typedef ResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;   
 
    67     //typedef ExpResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;
 
    68     typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt;
 
    69     typedef typename ResGW::Edge ResGWEdge;
 
    70     //typedef typename ResGW::template NodeMap<bool> ReachedMap;
 
    71     typedef typename Graph::template NodeMap<int> ReachedMap;
 
    74     //level works as a bool map in augmenting path algorithms and is
 
    75     //used by bfs for storing reached information.  In preflow, it
 
    76     //shows the levels of nodes.     
 
    79     //excess is needed only in preflow
 
    80     typename Graph::template NodeMap<Num> excess;
 
    85     //     void set(const Graph& _G, Node _s, Node _t, const CapMap& _capacity,
 
    91     // 	capacity=&_capacity;
 
    94     // 	level.set (_G); //kellene vmi ilyesmi fv
 
    95     // 	excess(_G,0); //itt is
 
    98     // constants used for heuristics
 
    99     static const int H0=20;
 
   100     static const int H1=1;
 
   104     ///Indicates the property of the starting flow.
 
   106     ///Indicates the property of the starting flow. The meanings are as follows:
 
   107     ///- \c ZERO_FLOW: constant zero flow
 
   108     ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to
 
   109     ///the sum of the out-flows in every node except the \e source and
 
   111     ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at 
 
   112     ///least the sum of the out-flows in every node except the \e source.
 
   113     ///- \c NO_FLOW: indicates an unspecified edge map. \ref flow will be 
 
   114     ///set to the constant zero flow in the beginning of the algorithm in this case.
 
   125       AFTER_FAST_AUGMENTING, 
 
   126       AFTER_PRE_FLOW_PHASE_1,      
 
   127       AFTER_PRE_FLOW_PHASE_2
 
   130     /// Don not needle this flag only if necessary.
 
   132     int number_of_augmentations;
 
   135     template<typename IntMap>
 
   136     class TrickyReachedMap {
 
   139       int* number_of_augmentations;
 
   141       TrickyReachedMap(IntMap& _map, int& _number_of_augmentations) : 
 
   142 	map(&_map), number_of_augmentations(&_number_of_augmentations) { }
 
   143       void set(const Node& n, bool b) {
 
   145 	  map->set(n, *number_of_augmentations);
 
   147 	  map->set(n, *number_of_augmentations-1);
 
   149       bool operator[](const Node& n) const { 
 
   150 	return (*map)[n]==*number_of_augmentations; 
 
   156     ///\todo Document, please.
 
   158     MaxFlow(const Graph& _G, Node _s, Node _t, const CapMap& _capacity,
 
   160       g(&_G), s(_s), t(_t), capacity(&_capacity),
 
   161       flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0), 
 
   162       status(AFTER_NOTHING), number_of_augmentations(0) { }
 
   164     ///Runs a maximum flow algorithm.
 
   166     ///Runs a preflow algorithm, which is the fastest maximum flow
 
   167     ///algorithm up-to-date. The default for \c fe is ZERO_FLOW.
 
   168     ///\pre The starting flow must be
 
   169     /// - a constant zero flow if \c fe is \c ZERO_FLOW,
 
   170     /// - an arbitary flow if \c fe is \c GEN_FLOW,
 
   171     /// - an arbitary preflow if \c fe is \c PRE_FLOW,
 
   172     /// - any map if \c fe is NO_FLOW.
 
   173     void run(FlowEnum fe=ZERO_FLOW) {
 
   178     ///Runs a preflow algorithm.  
 
   180     ///Runs a preflow algorithm. The preflow algorithms provide the
 
   181     ///fastest way to compute a maximum flow in a directed graph.
 
   182     ///\pre The starting flow must be
 
   183     /// - a constant zero flow if \c fe is \c ZERO_FLOW,
 
   184     /// - an arbitary flow if \c fe is \c GEN_FLOW,
 
   185     /// - an arbitary preflow if \c fe is \c PRE_FLOW,
 
   186     /// - any map if \c fe is NO_FLOW.
 
   188     ///\todo NO_FLOW should be the default flow.
 
   189     void preflow(FlowEnum fe) {
 
   196     //   list 'level_list' on the nodes on level i implemented by hand
 
   197     //   stack 'active' on the active nodes on level i                                                                                    
 
   198     //   runs heuristic 'highest label' for H1*n relabels
 
   199     //   runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label'
 
   200     //   Parameters H0 and H1 are initialized to 20 and 1.
 
   202     ///Runs the first phase of the preflow algorithm.
 
   204     ///The preflow algorithm consists of two phases, this method runs the
 
   205     ///first phase. After the first phase the maximum flow value and a
 
   206     ///minimum value cut can already be computed, though a maximum flow
 
   207     ///is net yet obtained. So after calling this method \ref flowValue
 
   208     ///and \ref actMinCut gives proper results.
 
   209     ///\warning: \ref minCut, \ref minMinCut and \ref maxMinCut do not
 
   210     ///give minimum value cuts unless calling \ref preflowPhase2.
 
   211     ///\pre The starting flow must be
 
   212     /// - a constant zero flow if \c fe is \c ZERO_FLOW,
 
   213     /// - an arbitary flow if \c fe is \c GEN_FLOW,
 
   214     /// - an arbitary preflow if \c fe is \c PRE_FLOW,
 
   215     /// - any map if \c fe is NO_FLOW.
 
   216     void preflowPhase1(FlowEnum fe);
 
   218     ///Runs the second phase of the preflow algorithm.
 
   220     ///The preflow algorithm consists of two phases, this method runs
 
   221     ///the second phase. After calling \ref preflowPhase1 and then
 
   222     ///\ref preflowPhase2 the methods \ref flowValue, \ref minCut,
 
   223     ///\ref minMinCut and \ref maxMinCut give proper results.
 
   224     ///\pre \ref preflowPhase1 must be called before.
 
   225     void preflowPhase2();
 
   227     /// Starting from a flow, this method searches for an augmenting path
 
   228     /// according to the Edmonds-Karp algorithm
 
   229     /// and augments the flow on if any.
 
   230     /// The return value shows if the augmentation was succesful.
 
   231     bool augmentOnShortestPath();
 
   232     bool augmentOnShortestPath2();
 
   234     /// Starting from a flow, this method searches for an augmenting blocking
 
   235     /// flow according to Dinits' algorithm and augments the flow on if any.
 
   236     /// The blocking flow is computed in a physically constructed
 
   237     /// residual graph of type \c Mutablegraph.
 
   238     /// The return value show sif the augmentation was succesful.
 
   239     template<typename MutableGraph> bool augmentOnBlockingFlow();
 
   241     /// The same as \c augmentOnBlockingFlow<MutableGraph> but the
 
   242     /// residual graph is not constructed physically.
 
   243     /// The return value shows if the augmentation was succesful.
 
   244     bool augmentOnBlockingFlow2();
 
   246     /// Returns the maximum value of a flow.
 
   248     /// Returns the maximum value of a flow, by counting the 
 
   249     /// over-flow of the target node \ref t.
 
   250     /// It can be called already after running \ref preflowPhase1.
 
   251     Num flowValue() const {
 
   253       FOR_EACH_INC_LOC(InEdgeIt, e, *g, t) a+=(*flow)[e];
 
   254       FOR_EACH_INC_LOC(OutEdgeIt, e, *g, t) a-=(*flow)[e];
 
   256       //marci figyu: excess[t] epp ezt adja preflow 1. fazisa utan   
 
   259     ///Returns a minimum value cut after calling \ref preflowPhase1.
 
   261     ///After the first phase of the preflow algorithm the maximum flow
 
   262     ///value and a minimum value cut can already be computed. This
 
   263     ///method can be called after running \ref preflowPhase1 for
 
   264     ///obtaining a minimum value cut.
 
   265     /// \warning Gives proper result only right after calling \ref
 
   267     /// \todo We have to make some status variable which shows the
 
   269     /// of the class. This enables us to determine which methods are valid
 
   270     /// for MinCut computation
 
   271     template<typename _CutMap>
 
   272     void actMinCut(_CutMap& M) const {
 
   275       case AFTER_PRE_FLOW_PHASE_1:
 
   276 	for(g->first(v); g->valid(v); g->next(v)) {
 
   284       case AFTER_PRE_FLOW_PHASE_2:
 
   288       case AFTER_AUGMENTING:
 
   289 	for(g->first(v); g->valid(v); g->next(v)) {
 
   297       case AFTER_FAST_AUGMENTING:
 
   298 	for(g->first(v); g->valid(v); g->next(v)) {
 
   299 	  if (level[v]==number_of_augmentations) {
 
   309     ///Returns the inclusionwise minimum of the minimum value cuts.
 
   311     ///Sets \c M to the characteristic vector of the minimum value cut
 
   312     ///which is inclusionwise minimum. It is computed by processing
 
   313     ///a bfs from the source node \c s in the residual graph.
 
   314     ///\pre M should be a node map of bools initialized to false.
 
   315     ///\pre \c flow must be a maximum flow.
 
   316     template<typename _CutMap>
 
   317     void minMinCut(_CutMap& M) const {
 
   318       std::queue<Node> queue;
 
   323       while (!queue.empty()) {
 
   324         Node w=queue.front();
 
   328 	for(g->first(e,w) ; g->valid(e); g->next(e)) {
 
   330 	  if (!M[v] && (*flow)[e] < (*capacity)[e] ) {
 
   337 	for(g->first(f,w) ; g->valid(f); g->next(f)) {
 
   339 	  if (!M[v] && (*flow)[f] > 0 ) {
 
   347     ///Returns the inclusionwise maximum of the minimum value cuts.
 
   349     ///Sets \c M to the characteristic vector of the minimum value cut
 
   350     ///which is inclusionwise maximum. It is computed by processing a
 
   351     ///backward bfs from the target node \c t in the residual graph.
 
   352     ///\pre M should be a node map of bools initialized to false.
 
   353     ///\pre \c flow must be a maximum flow. 
 
   354     template<typename _CutMap>
 
   355     void maxMinCut(_CutMap& M) const {
 
   358       for(g->first(v) ; g->valid(v); g->next(v)) {
 
   362       std::queue<Node> queue;
 
   367       while (!queue.empty()) {
 
   368         Node w=queue.front();
 
   372 	for(g->first(e,w) ; g->valid(e); g->next(e)) {
 
   374 	  if (M[v] && (*flow)[e] < (*capacity)[e] ) {
 
   381 	for(g->first(f,w) ; g->valid(f); g->next(f)) {
 
   383 	  if (M[v] && (*flow)[f] > 0 ) {
 
   391     ///Returns a minimum value cut.
 
   393     ///Sets \c M to the characteristic vector of a minimum value cut.
 
   394     ///\pre M should be a node map of bools initialized to false.
 
   395     ///\pre \c flow must be a maximum flow.    
 
   396     template<typename CutMap>
 
   397     void minCut(CutMap& M) const { minMinCut(M); }
 
   399     ///Resets the source node to \c _s.
 
   401     ///Resets the source node to \c _s.
 
   403     void resetSource(Node _s) { s=_s; status=AFTER_NOTHING; }
 
   405     ///Resets the target node to \c _t.
 
   407     ///Resets the target node to \c _t.
 
   409     void resetTarget(Node _t) { t=_t; status=AFTER_NOTHING; }
 
   411     /// Resets the edge map of the capacities to _cap.
 
   413     /// Resets the edge map of the capacities to _cap.
 
   415     void resetCap(const CapMap& _cap) { capacity=&_cap; status=AFTER_NOTHING; }
 
   417     /// Resets the edge map of the flows to _flow.
 
   419     /// Resets the edge map of the flows to _flow.
 
   421     void resetFlow(FlowMap& _flow) { flow=&_flow; status=AFTER_NOTHING; }
 
   426     int push(Node w, VecStack& active) {
 
   430       int newlevel=n;       //bound on the next level of w
 
   433       for(g->first(e,w); g->valid(e); g->next(e)) {
 
   435 	if ( (*flow)[e] >= (*capacity)[e] ) continue;
 
   438 	if( lev > level[v] ) { //Push is allowed now
 
   440 	  if ( excess[v]<=0 && v!=t && v!=s ) {
 
   442 	    active[lev_v].push(v);
 
   445 	  Num cap=(*capacity)[e];
 
   449 	  if ( remcap >= exc ) { //A nonsaturating push.
 
   451 	    flow->set(e, flo+exc);
 
   452 	    excess.set(v, excess[v]+exc);
 
   456 	  } else { //A saturating push.
 
   458 	    excess.set(v, excess[v]+remcap);
 
   461 	} else if ( newlevel > level[v] ) newlevel = level[v];
 
   466 	for(g->first(e,w); g->valid(e); g->next(e)) {
 
   468 	  if( (*flow)[e] <= 0 ) continue;
 
   471 	  if( lev > level[v] ) { //Push is allowed now
 
   473 	    if ( excess[v]<=0 && v!=t && v!=s ) {
 
   475 	      active[lev_v].push(v);
 
   480 	    if ( flo >= exc ) { //A nonsaturating push.
 
   482 	      flow->set(e, flo-exc);
 
   483 	      excess.set(v, excess[v]+exc);
 
   486 	    } else {  //A saturating push.
 
   488 	      excess.set(v, excess[v]+flo);
 
   492 	  } else if ( newlevel > level[v] ) newlevel = level[v];
 
   495       } // if w still has excess after the out edge for cycle
 
   503     void preflowPreproc(FlowEnum fe, VecStack& active,
 
   504 			VecNode& level_list, NNMap& left, NNMap& right)
 
   506       std::queue<Node> bfs_queue;
 
   509       case NO_FLOW:   //flow is already set to const zero in this case
 
   512 	  //Reverse_bfs from t, to find the starting level.
 
   516 	  while (!bfs_queue.empty()) {
 
   518 	    Node v=bfs_queue.front();
 
   523 	    for(g->first(e,v); g->valid(e); g->next(e)) {
 
   525 	      if ( level[w] == n && w != s ) {
 
   527 		Node first=level_list[l];
 
   528 		if ( g->valid(first) ) left.set(first,w);
 
   538 	  for(g->first(e,s); g->valid(e); g->next(e))
 
   540 	      Num c=(*capacity)[e];
 
   541 	      if ( c <= 0 ) continue;
 
   543 	      if ( level[w] < n ) {
 
   544 		if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
 
   546 		excess.set(w, excess[w]+c);
 
   555 	  //Reverse_bfs from t in the residual graph,
 
   556 	  //to find the starting level.
 
   560 	  while (!bfs_queue.empty()) {
 
   562 	    Node v=bfs_queue.front();
 
   567 	    for(g->first(e,v); g->valid(e); g->next(e)) {
 
   568 	      if ( (*capacity)[e] <= (*flow)[e] ) continue;
 
   570 	      if ( level[w] == n && w != s ) {
 
   572 		Node first=level_list[l];
 
   573 		if ( g->valid(first) ) left.set(first,w);
 
   581 	    for(g->first(f,v); g->valid(f); g->next(f)) {
 
   582 	      if ( 0 >= (*flow)[f] ) continue;
 
   584 	      if ( level[w] == n && w != s ) {
 
   586 		Node first=level_list[l];
 
   587 		if ( g->valid(first) ) left.set(first,w);
 
   598 	  for(g->first(e,s); g->valid(e); g->next(e))
 
   600 	      Num rem=(*capacity)[e]-(*flow)[e];
 
   601 	      if ( rem <= 0 ) continue;
 
   603 	      if ( level[w] < n ) {
 
   604 		if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
 
   605 		flow->set(e, (*capacity)[e]);
 
   606 		excess.set(w, excess[w]+rem);
 
   611 	  for(g->first(f,s); g->valid(f); g->next(f))
 
   613 	      if ( (*flow)[f] <= 0 ) continue;
 
   615 	      if ( level[w] < n ) {
 
   616 		if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
 
   617 		excess.set(w, excess[w]+(*flow)[f]);
 
   628     void relabel(Node w, int newlevel, VecStack& active,
 
   629 		 VecNode& level_list, NNMap& left,
 
   630 		 NNMap& right, int& b, int& k, bool what_heur )
 
   635       Node right_n=right[w];
 
   639       if ( g->valid(right_n) ) {
 
   640 	if ( g->valid(left_n) ) {
 
   641 	  right.set(left_n, right_n);
 
   642 	  left.set(right_n, left_n);
 
   644 	  level_list[lev]=right_n;
 
   645 	  left.set(right_n, INVALID);
 
   648 	if ( g->valid(left_n) ) {
 
   649 	  right.set(left_n, INVALID);
 
   651 	  level_list[lev]=INVALID;
 
   656       if ( !g->valid(level_list[lev]) ) {
 
   659 	for (int i=lev; i!=k ; ) {
 
   660 	  Node v=level_list[++i];
 
   661 	  while ( g->valid(v) ) {
 
   665 	  level_list[i]=INVALID;
 
   667 	    while ( !active[i].empty() ) {
 
   668 	      active[i].pop();    //FIXME: ezt szebben kene
 
   680 	if ( newlevel == n ) level.set(w,n);
 
   682 	  level.set(w,++newlevel);
 
   683 	  active[newlevel].push(w);
 
   684 	  if ( what_heur ) b=newlevel;
 
   685 	  if ( k < newlevel ) ++k;      //now k=newlevel
 
   686 	  Node first=level_list[newlevel];
 
   687 	  if ( g->valid(first) ) left.set(first,w);
 
   690 	  level_list[newlevel]=w;
 
   697     template<typename MapGraphWrapper>
 
   700       const MapGraphWrapper* g;
 
   701       typename MapGraphWrapper::template NodeMap<int> dist;
 
   703       DistanceMap(MapGraphWrapper& _g) : g(&_g), dist(*g, g->nodeNum()) { }
 
   704       void set(const typename MapGraphWrapper::Node& n, int a) {
 
   707       int operator[](const typename MapGraphWrapper::Node& n) const { 
 
   710       //       int get(const typename MapGraphWrapper::Node& n) const {
 
   712       //       bool get(const typename MapGraphWrapper::Edge& e) const {
 
   713       // 	return (dist.get(g->tail(e))<dist.get(g->head(e))); }
 
   714       bool operator[](const typename MapGraphWrapper::Edge& e) const {
 
   715 	return (dist[g->tail(e)]<dist[g->head(e)]);
 
   722   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
 
   723   void MaxFlow<Graph, Num, CapMap, FlowMap>::preflowPhase1(FlowEnum fe)
 
   726     int heur0=(int)(H0*n);  //time while running 'bound decrease'
 
   727     int heur1=(int)(H1*n);  //time while running 'highest label'
 
   728     int heur=heur1;         //starting time interval (#of relabels)
 
   732     //It is 0 in case 'bound decrease' and 1 in case 'highest label'
 
   735     //Needed for 'bound decrease', true means no active nodes are above bound
 
   738     int k=n-2;  //bound on the highest level under n containing a node
 
   739     int b=k;    //bound on the highest level under n of an active node
 
   743     NNMap left(*g, INVALID);
 
   744     NNMap right(*g, INVALID);
 
   745     VecNode level_list(n,INVALID);
 
   746     //List of the nodes in level i<n, set to n.
 
   749     for(g->first(v); g->valid(v); g->next(v)) level.set(v,n);
 
   750     //setting each node to level n
 
   752     if ( fe == NO_FLOW ) {
 
   754       for(g->first(e); g->valid(e); g->next(e)) flow->set(e,0);
 
   757     switch (fe) { //computing the excess
 
   761 	for(g->first(v); g->valid(v); g->next(v)) {
 
   765 	  for(g->first(e,v); g->valid(e); g->next(e)) exc+=(*flow)[e];
 
   767 	  for(g->first(f,v); g->valid(f); g->next(f)) exc-=(*flow)[f];
 
   771 	  //putting the active nodes into the stack
 
   773 	  if ( exc > 0 && lev < n && v != t ) active[lev].push(v);
 
   780 	for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0);
 
   784 	for(g->first(e,t); g->valid(e); g->next(e)) exc+=(*flow)[e];
 
   786 	for(g->first(f,t); g->valid(f); g->next(f)) exc-=(*flow)[f];
 
   794         for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0);
 
   799     preflowPreproc(fe, active, level_list, left, right);
 
   800     //End of preprocessing
 
   803     //Push/relabel on the highest level active nodes.
 
   806 	if ( !what_heur && !end && k > 0 ) {
 
   812       if ( active[b].empty() ) --b;
 
   815 	Node w=active[b].top();
 
   817 	int newlevel=push(w,active);
 
   818 	if ( excess[w] > 0 ) relabel(w, newlevel, active, level_list,
 
   819 				     left, right, b, k, what_heur);
 
   822 	if ( numrelabel >= heur ) {
 
   837     status=AFTER_PRE_FLOW_PHASE_1;
 
   842   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
 
   843   void MaxFlow<Graph, Num, CapMap, FlowMap>::preflowPhase2()
 
   846     int k=n-2;  //bound on the highest level under n containing a node
 
   847     int b=k;    //bound on the highest level under n of an active node
 
   851     std::queue<Node> bfs_queue;
 
   854     while (!bfs_queue.empty()) {
 
   856       Node v=bfs_queue.front();
 
   861       for(g->first(e,v); g->valid(e); g->next(e)) {
 
   862 	if ( (*capacity)[e] <= (*flow)[e] ) continue;
 
   864 	if ( level[u] >= n ) {
 
   867 	  if ( excess[u] > 0 ) active[l].push(u);
 
   872       for(g->first(f,v); g->valid(f); g->next(f)) {
 
   873 	if ( 0 >= (*flow)[f] ) continue;
 
   875 	if ( level[u] >= n ) {
 
   878 	  if ( excess[u] > 0 ) active[l].push(u);
 
   888       if ( active[b].empty() ) --b;
 
   890 	Node w=active[b].top();
 
   892 	int newlevel=push(w,active);
 
   895 	if ( excess[w] > 0 ) {
 
   896 	  level.set(w,++newlevel);
 
   897 	  active[newlevel].push(w);
 
   900       }  // if stack[b] is nonempty
 
   903     status=AFTER_PRE_FLOW_PHASE_2;
 
   908   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
 
   909   bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnShortestPath()
 
   911     ResGW res_graph(*g, *capacity, *flow);
 
   914     //ReachedMap level(res_graph);
 
   915     FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
 
   916     BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
 
   917     bfs.pushAndSetReached(s);
 
   919     typename ResGW::template NodeMap<ResGWEdge> pred(res_graph);
 
   920     pred.set(s, INVALID);
 
   922     typename ResGW::template NodeMap<Num> free(res_graph);
 
   924     //searching for augmenting path
 
   925     while ( !bfs.finished() ) {
 
   926       ResGWOutEdgeIt e=bfs;
 
   927       if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
 
   928 	Node v=res_graph.tail(e);
 
   929 	Node w=res_graph.head(e);
 
   931 	if (res_graph.valid(pred[v])) {
 
   932 	  free.set(w, std::min(free[v], res_graph.resCap(e)));
 
   934 	  free.set(w, res_graph.resCap(e));
 
   936 	if (res_graph.head(e)==t) { _augment=true; break; }
 
   940     } //end of searching augmenting path
 
   944       Num augment_value=free[t];
 
   945       while (res_graph.valid(pred[n])) {
 
   947 	res_graph.augment(e, augment_value);
 
   952     status=AFTER_AUGMENTING;
 
   957   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
 
   958   bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnShortestPath2()
 
   960     ResGW res_graph(*g, *capacity, *flow);
 
   963     if (status!=AFTER_FAST_AUGMENTING) {
 
   964       FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0); 
 
   965       number_of_augmentations=1;
 
   967       ++number_of_augmentations;
 
   969     TrickyReachedMap<ReachedMap> 
 
   970       tricky_reached_map(level, number_of_augmentations);
 
   971     //ReachedMap level(res_graph);
 
   972 //    FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
 
   973     BfsIterator<ResGW, TrickyReachedMap<ReachedMap> > 
 
   974       bfs(res_graph, tricky_reached_map);
 
   975     bfs.pushAndSetReached(s);
 
   977     typename ResGW::template NodeMap<ResGWEdge> pred(res_graph);
 
   978     pred.set(s, INVALID);
 
   980     typename ResGW::template NodeMap<Num> free(res_graph);
 
   982     //searching for augmenting path
 
   983     while ( !bfs.finished() ) {
 
   984       ResGWOutEdgeIt e=bfs;
 
   985       if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
 
   986 	Node v=res_graph.tail(e);
 
   987 	Node w=res_graph.head(e);
 
   989 	if (res_graph.valid(pred[v])) {
 
   990 	  free.set(w, std::min(free[v], res_graph.resCap(e)));
 
   992 	  free.set(w, res_graph.resCap(e));
 
   994 	if (res_graph.head(e)==t) { _augment=true; break; }
 
   998     } //end of searching augmenting path
 
  1002       Num augment_value=free[t];
 
  1003       while (res_graph.valid(pred[n])) {
 
  1004 	ResGWEdge e=pred[n];
 
  1005 	res_graph.augment(e, augment_value);
 
  1006 	n=res_graph.tail(e);
 
  1010     status=AFTER_FAST_AUGMENTING;
 
  1015   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
 
  1016   template<typename MutableGraph>
 
  1017   bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow()
 
  1019     typedef MutableGraph MG;
 
  1020     bool _augment=false;
 
  1022     ResGW res_graph(*g, *capacity, *flow);
 
  1024     //bfs for distances on the residual graph
 
  1025     //ReachedMap level(res_graph);
 
  1026     FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
 
  1027     BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
 
  1028     bfs.pushAndSetReached(s);
 
  1029     typename ResGW::template NodeMap<int>
 
  1030       dist(res_graph); //filled up with 0's
 
  1032     //F will contain the physical copy of the residual graph
 
  1033     //with the set of edges which are on shortest paths
 
  1035     typename ResGW::template NodeMap<typename MG::Node>
 
  1036       res_graph_to_F(res_graph);
 
  1038       typename ResGW::NodeIt n;
 
  1039       for(res_graph.first(n); res_graph.valid(n); res_graph.next(n)) {
 
  1040 	res_graph_to_F.set(n, F.addNode());
 
  1044     typename MG::Node sF=res_graph_to_F[s];
 
  1045     typename MG::Node tF=res_graph_to_F[t];
 
  1046     typename MG::template EdgeMap<ResGWEdge> original_edge(F);
 
  1047     typename MG::template EdgeMap<Num> residual_capacity(F);
 
  1049     while ( !bfs.finished() ) {
 
  1050       ResGWOutEdgeIt e=bfs;
 
  1051       if (res_graph.valid(e)) {
 
  1052 	if (bfs.isBNodeNewlyReached()) {
 
  1053 	  dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1);
 
  1054 	  typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)],
 
  1055 					res_graph_to_F[res_graph.head(e)]);
 
  1056 	  original_edge.update();
 
  1057 	  original_edge.set(f, e);
 
  1058 	  residual_capacity.update();
 
  1059 	  residual_capacity.set(f, res_graph.resCap(e));
 
  1061 	  if (dist[res_graph.head(e)]==(dist[res_graph.tail(e)]+1)) {
 
  1062 	    typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)],
 
  1063 					  res_graph_to_F[res_graph.head(e)]);
 
  1064 	    original_edge.update();
 
  1065 	    original_edge.set(f, e);
 
  1066 	    residual_capacity.update();
 
  1067 	    residual_capacity.set(f, res_graph.resCap(e));
 
  1072     } //computing distances from s in the residual graph
 
  1074     bool __augment=true;
 
  1078       //computing blocking flow with dfs
 
  1079       DfsIterator< MG, typename MG::template NodeMap<bool> > dfs(F);
 
  1080       typename MG::template NodeMap<typename MG::Edge> pred(F);
 
  1081       pred.set(sF, INVALID);
 
  1082       //invalid iterators for sources
 
  1084       typename MG::template NodeMap<Num> free(F);
 
  1086       dfs.pushAndSetReached(sF);
 
  1087       while (!dfs.finished()) {
 
  1089 	if (F.valid(/*typename MG::OutEdgeIt*/(dfs))) {
 
  1090 	  if (dfs.isBNodeNewlyReached()) {
 
  1091 	    typename MG::Node v=F.aNode(dfs);
 
  1092 	    typename MG::Node w=F.bNode(dfs);
 
  1094 	    if (F.valid(pred[v])) {
 
  1095 	      free.set(w, std::min(free[v], residual_capacity[dfs]));
 
  1097 	      free.set(w, residual_capacity[dfs]);
 
  1106 	    F.erase(/*typename MG::OutEdgeIt*/(dfs));
 
  1112 	typename MG::Node n=tF;
 
  1113 	Num augment_value=free[tF];
 
  1114 	while (F.valid(pred[n])) {
 
  1115 	  typename MG::Edge e=pred[n];
 
  1116 	  res_graph.augment(original_edge[e], augment_value);
 
  1118 	  if (residual_capacity[e]==augment_value)
 
  1121 	    residual_capacity.set(e, residual_capacity[e]-augment_value);
 
  1127     status=AFTER_AUGMENTING;
 
  1134   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
 
  1135   bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow2()
 
  1137     bool _augment=false;
 
  1139     ResGW res_graph(*g, *capacity, *flow);
 
  1141     //ReachedMap level(res_graph);
 
  1142     FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
 
  1143     BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
 
  1145     bfs.pushAndSetReached(s);
 
  1146     DistanceMap<ResGW> dist(res_graph);
 
  1147     while ( !bfs.finished() ) {
 
  1148       ResGWOutEdgeIt e=bfs;
 
  1149       if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
 
  1150 	dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1);
 
  1153     } //computing distances from s in the residual graph
 
  1155       //Subgraph containing the edges on some shortest paths
 
  1156     ConstMap<typename ResGW::Node, bool> true_map(true);
 
  1157     typedef SubGraphWrapper<ResGW, ConstMap<typename ResGW::Node, bool>,
 
  1158       DistanceMap<ResGW> > FilterResGW;
 
  1159     FilterResGW filter_res_graph(res_graph, true_map, dist);
 
  1161     //Subgraph, which is able to delete edges which are already
 
  1163     typename FilterResGW::template NodeMap<typename FilterResGW::OutEdgeIt>
 
  1164       first_out_edges(filter_res_graph);
 
  1165     typename FilterResGW::NodeIt v;
 
  1166     for(filter_res_graph.first(v); filter_res_graph.valid(v);
 
  1167 	filter_res_graph.next(v))
 
  1169  	typename FilterResGW::OutEdgeIt e;
 
  1170  	filter_res_graph.first(e, v);
 
  1171  	first_out_edges.set(v, e);
 
  1173     typedef ErasingFirstGraphWrapper<FilterResGW, typename FilterResGW::
 
  1174       template NodeMap<typename FilterResGW::OutEdgeIt> > ErasingResGW;
 
  1175     ErasingResGW erasing_res_graph(filter_res_graph, first_out_edges);
 
  1177     bool __augment=true;
 
  1182       //computing blocking flow with dfs
 
  1183       DfsIterator< ErasingResGW,
 
  1184 	typename ErasingResGW::template NodeMap<bool> >
 
  1185 	dfs(erasing_res_graph);
 
  1186       typename ErasingResGW::
 
  1187 	template NodeMap<typename ErasingResGW::OutEdgeIt>
 
  1188 	pred(erasing_res_graph);
 
  1189       pred.set(s, INVALID);
 
  1190       //invalid iterators for sources
 
  1192       typename ErasingResGW::template NodeMap<Num>
 
  1193 	free1(erasing_res_graph);
 
  1195       dfs.pushAndSetReached
 
  1197 	(typename ErasingResGW::Node
 
  1198 	 (typename FilterResGW::Node
 
  1199 	  (typename ResGW::Node(s)
 
  1203       while (!dfs.finished()) {
 
  1205 	if (erasing_res_graph.valid(typename ErasingResGW::OutEdgeIt(dfs)))
 
  1207   	    if (dfs.isBNodeNewlyReached()) {
 
  1209  	      typename ErasingResGW::Node v=erasing_res_graph.aNode(dfs);
 
  1210  	      typename ErasingResGW::Node w=erasing_res_graph.bNode(dfs);
 
  1212  	      pred.set(w, /*typename ErasingResGW::OutEdgeIt*/(dfs));
 
  1213  	      if (erasing_res_graph.valid(pred[v])) {
 
  1215 		  (w, std::min(free1[v], res_graph.resCap
 
  1216 			       (typename ErasingResGW::OutEdgeIt(dfs))));
 
  1219 		  (w, res_graph.resCap
 
  1220 		   (typename ErasingResGW::OutEdgeIt(dfs)));
 
  1229  	      erasing_res_graph.erase(dfs);
 
  1235 	typename ErasingResGW::Node
 
  1236 	  n=typename FilterResGW::Node(typename ResGW::Node(t));
 
  1237 	// 	  typename ResGW::NodeMap<Num> a(res_graph);
 
  1238 	// 	  typename ResGW::Node b;
 
  1240 	// 	  typename FilterResGW::NodeMap<Num> a1(filter_res_graph);
 
  1241 	// 	  typename FilterResGW::Node b1;
 
  1243 	// 	  typename ErasingResGW::NodeMap<Num> a2(erasing_res_graph);
 
  1244 	// 	  typename ErasingResGW::Node b2;
 
  1246 	Num augment_value=free1[n];
 
  1247 	while (erasing_res_graph.valid(pred[n])) {
 
  1248 	  typename ErasingResGW::OutEdgeIt e=pred[n];
 
  1249 	  res_graph.augment(e, augment_value);
 
  1250 	  n=erasing_res_graph.tail(e);
 
  1251 	  if (res_graph.resCap(e)==0)
 
  1252 	    erasing_res_graph.erase(e);
 
  1256     } //while (__augment)
 
  1258     status=AFTER_AUGMENTING;
 
  1265 #endif //LEMON_MAX_FLOW_H