2 #ifndef LEMON_MAX_FLOW_H
 
     3 #define LEMON_MAX_FLOW_H
 
     7 ///\brief Maximum flow algorithm.
 
    16 #include <graph_wrapper.h>
 
    17 #include <bfs_iterator.h>
 
    20 #include <for_each_macros.h>
 
    23 /// \brief Dimacs file format reader.
 
    30   ///Maximum flow algorithms class.
 
    32   ///This class provides various algorithms for finding a flow of
 
    33   ///maximum value in a directed graph. The \e source node, the \e
 
    34   ///target node, the \e capacity of the edges and the \e starting \e
 
    35   ///flow value of the edges can be passed to the algorithm by the
 
    36   ///constructor. It is possible to change these quantities using the
 
    37   ///functions \ref resetSource, \ref resetTarget, \ref resetCap and
 
    38   ///\ref resetFlow. Before any subsequent runs of any algorithm of
 
    39   ///the class \ref resetFlow should be called, otherwise it will
 
    40   ///start from a maximum flow.
 
    42   ///After running an algorithm of the class, the maximum value of a
 
    43   ///value can be obtained by calling \ref flowValue(). The minimum
 
    44   ///value cut can be written into a \c node map of \c bools by
 
    45   ///calling \ref minCut. (\ref minMinCut and \ref maxMinCut writes
 
    46   ///the inclusionwise minimum and maximum of the minimum value
 
    49   ///\param Graph The undirected graph type the algorithm runs on.
 
    50   ///\param Num The number type of the capacities and the flow values.
 
    51   ///\param The type of the capacity map.
 
    52   ///\param The type of the flow map.
 
    54   ///\author Marton Makai, Jacint Szabo
 
    55   template <typename Graph, typename Num, 
 
    56 	    typename CapMap=typename Graph::template EdgeMap<Num>, 
 
    57             typename FlowMap=typename Graph::template EdgeMap<Num> >
 
    60     typedef typename Graph::Node Node;
 
    61     typedef typename Graph::NodeIt NodeIt;
 
    62     typedef typename Graph::OutEdgeIt OutEdgeIt;
 
    63     typedef typename Graph::InEdgeIt InEdgeIt;
 
    65     typedef typename std::vector<std::stack<Node> > VecStack;
 
    66     typedef typename Graph::template NodeMap<Node> NNMap;
 
    67     typedef typename std::vector<Node> VecNode;
 
    69     typedef ResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;
 
    70     typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt;
 
    71     typedef typename ResGW::Edge ResGWEdge;
 
    72     //typedef typename ResGW::template NodeMap<bool> ReachedMap;  //fixme
 
    73     typedef typename Graph::template NodeMap<int> ReachedMap;
 
    78     const CapMap* capacity;  
 
    80     int n;          //the number of nodes of G
 
    82     //level works as a bool map in augmenting path algorithms and is
 
    83     //used by bfs for storing reached information.  In preflow, it
 
    84     //shows the levels of nodes. 
 
    87     //excess is needed only in preflow
 
    88     typename Graph::template NodeMap<Num> excess; 
 
    94     //     void set(const Graph& _G, Node _s, Node _t, const CapMap& _capacity, 
 
   100     // 	capacity=&_capacity;
 
   103     // 	level.set (_G); //kellene vmi ilyesmi fv 
 
   104     // 	excess(_G,0); //itt is
 
   109     ///Indicates the property of the starting flow. 
 
   111     ///Indicates the property of the starting flow. The meanings: 
 
   112     ///- \c ZERO_FLOW: constant zero flow
 
   113     ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to
 
   114     ///the sum of the out-flows in every node except the source and
 
   116     ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at
 
   117     ///least the sum of the out-flows in every node except the source.
 
   124     MaxFlow(const Graph& _G, Node _s, Node _t, const CapMap& _capacity, 
 
   126       g(&_G), s(_s), t(_t), capacity(&_capacity), 
 
   127       flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0) {}
 
   129     ///Runs a maximum flow algorithm.
 
   131     ///Runs a preflow algorithm, which is the fastest maximum flow
 
   132     ///algorithm up-to-date. The default for \c fe is ZERO_FLOW.
 
   133     ///\pre The starting flow must be a 
 
   134     /// - constant zero flow if \c fe is \c ZERO_FLOW,
 
   135     /// - an arbitary flow if \c fe is \c GEN_FLOW, 
 
   136     /// - an arbitary preflow if \c fe is \c PRE_FLOW.
 
   137     void run( flowEnum fe=ZERO_FLOW ) {
 
   141     ///Runs a preflow algorithm.
 
   143     ///Runs a preflow algorithm. The preflow algorithms provide the
 
   144     ///fastest way to compute a maximum flow in a directed graph.
 
   145     ///\pre The starting flow must be a 
 
   146     /// - constant zero flow if \c fe is \c ZERO_FLOW,
 
   147     /// - an arbitary flow if \c fe is \c GEN_FLOW, 
 
   148     /// - an arbitary preflow if \c fe is \c PRE_FLOW.
 
   149     void preflow(flowEnum fe) {
 
   156     //   list 'level_list' on the nodes on level i implemented by hand
 
   157     //   stack 'active' on the active nodes on level i
 
   158     //   runs heuristic 'highest label' for H1*n relabels
 
   159     //   runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label'
 
   160     //   Parameters H0 and H1 are initialized to 20 and 1.
 
   162     ///Runs the first phase of the preflow algorithm.
 
   164     ///The preflow algorithm consists of two phases, this method runs the
 
   165     ///first phase. After the first phase the maximum flow value and a
 
   166     ///minimum value cut can already be computed, though a maximum flow
 
   167     ///is net yet obtained. So after calling this method \ref flowValue
 
   168     ///and \ref actMinCut gives proper results. 
 
   169     ///\warning: \ref minCut, \ref minMinCut and \ref maxMinCut do not
 
   170     ///give minimum value cuts unless calling \ref preflowPhase2.
 
   171     ///\pre The starting flow must be a 
 
   172     /// - constant zero flow if \c fe is \c ZERO_FLOW,
 
   173     /// - an arbitary flow if \c fe is \c GEN_FLOW, 
 
   174     /// - an arbitary preflow if \c fe is \c PRE_FLOW.
 
   175     void preflowPhase1( flowEnum fe );
 
   177     ///Runs the second phase of the preflow algorithm.
 
   179     ///The preflow algorithm consists of two phases, this method runs
 
   180     ///the second phase. After calling \ref preflowPhase1 and then
 
   181     ///\ref preflowPhase2 the methods \ref flowValue, \ref minCut,
 
   182     ///\ref minMinCut and \ref maxMinCut give proper results.
 
   183     ///\pre \ref preflowPhase1 must be called before.
 
   184     void preflowPhase2();
 
   186     /// Starting from a flow, this method searches for an augmenting path 
 
   187     /// according to the Edmonds-Karp algorithm 
 
   188     /// and augments the flow on if any. 
 
   189     /// The return value shows if the augmentation was successful.
 
   190     bool augmentOnShortestPath();
 
   192     /// Starting from a flow, this method searches for an augmenting blockin 
 
   193     /// flow according to Dinits' algorithm and augments the flow on if any. 
 
   194     /// The blocking flow is computed in a physically constructed 
 
   195     /// residual graph of type \c Mutablegraph.
 
   196     /// The return value show sif the augmentation was succesful.
 
   197     template<typename MutableGraph> bool augmentOnBlockingFlow();
 
   199     /// The same as \c augmentOnBlockingFlow<MutableGraph> but the 
 
   200     /// residual graph is not constructed physically.
 
   201     /// The return value shows if the augmentation was succesful.
 
   202     bool augmentOnBlockingFlow2();
 
   204     /// Returns the actual flow value.
 
   205     /// More precisely, it returns the negative excess of s, thus 
 
   206     /// this works also for preflows.
 
   207     ///Can be called already after \ref preflowPhase1.
 
   211       FOR_EACH_INC_LOC(OutEdgeIt, e, *g, s) a+=(*flow)[e];
 
   212       FOR_EACH_INC_LOC(InEdgeIt, e, *g, s) a-=(*flow)[e];
 
   214       //marci figyu: excess[t] epp ezt adja preflow 0. fazisa utan
 
   217     ///Returns a minimum value cut after calling \ref preflowPhase1.
 
   219     ///After the first phase of the preflow algorithm the maximum flow
 
   220     ///value and a minimum value cut can already be computed. This
 
   221     ///method can be called after running \ref preflowPhase1 for
 
   222     ///obtaining a minimum value cut.
 
   223     ///\warning: Gives proper result only right after calling \ref
 
   225     ///\todo We have to make some status variable which shows the actual state 
 
   226     /// of the class. This enables us to determine which methods are valid 
 
   227     /// for MinCut computation
 
   228     template<typename _CutMap>
 
   229     void actMinCut(_CutMap& M) {
 
   231       for(g->first(v); g->valid(v); g->next(v)) {
 
   232 	if ( level[v] < n ) {
 
   240     ///Returns the inclusionwise minimum of the minimum value cuts.
 
   242     ///Sets \c M to the characteristic vector of the minimum value cut
 
   243     ///which is inclusionwise minimum. It is computed by processing
 
   244     ///a bfs from the source node \c s in the residual graph.
 
   245     ///\pre M should be a node map of bools initialized to false.
 
   246     ///\pre \c flow must be a maximum flow.
 
   247     template<typename _CutMap>
 
   248     void minMinCut(_CutMap& M) {
 
   250       std::queue<Node> queue;
 
   255       while (!queue.empty()) {
 
   256         Node w=queue.front();
 
   260 	for(g->first(e,w) ; g->valid(e); g->next(e)) {
 
   262 	  if (!M[v] && (*flow)[e] < (*capacity)[e] ) {
 
   269 	for(g->first(f,w) ; g->valid(f); g->next(f)) {
 
   271 	  if (!M[v] && (*flow)[f] > 0 ) {
 
   280     ///Returns the inclusionwise maximum of the minimum value cuts.
 
   282     ///Sets \c M to the characteristic vector of the minimum value cut
 
   283     ///which is inclusionwise maximum. It is computed by processing a
 
   284     ///backward bfs from the target node \c t in the residual graph.
 
   285     ///\pre M should be a node map of bools initialized to false.
 
   286     ///\pre \c flow must be a maximum flow.
 
   287     template<typename _CutMap>
 
   288     void maxMinCut(_CutMap& M) {
 
   291       for(g->first(v) ; g->valid(v); g->next(v)) {
 
   295       std::queue<Node> queue;
 
   300       while (!queue.empty()) {
 
   301         Node w=queue.front();
 
   306 	for(g->first(e,w) ; g->valid(e); g->next(e)) {
 
   308 	  if (M[v] && (*flow)[e] < (*capacity)[e] ) {
 
   315 	for(g->first(f,w) ; g->valid(f); g->next(f)) {
 
   317 	  if (M[v] && (*flow)[f] > 0 ) {
 
   326     ///Returns a minimum value cut.
 
   328     ///Sets \c M to the characteristic vector of a minimum value cut.
 
   329     ///\pre M should be a node map of bools initialized to false.
 
   330     ///\pre \c flow must be a maximum flow.
 
   331     template<typename CutMap>
 
   332     void minCut(CutMap& M) { minMinCut(M); }
 
   334     ///Resets the source node to \c _s.
 
   336     ///Resets the source node to \c _s.
 
   338     void resetSource(Node _s) { s=_s; }
 
   341     ///Resets the target node to \c _t.
 
   343     ///Resets the target node to \c _t.
 
   345     void resetTarget(Node _t) { t=_t; }
 
   347     /// Resets the edge map of the capacities to _cap.
 
   349     /// Resets the edge map of the capacities to _cap.
 
   351     void resetCap(const CapMap& _cap) { capacity=&_cap; }
 
   353     /// Resets the edge map of the flows to _flow.
 
   355     /// Resets the edge map of the flows to _flow.
 
   357     void resetFlow(FlowMap& _flow) { flow=&_flow; }
 
   362     int push(Node w, VecStack& active) {
 
   366       int newlevel=n;       //bound on the next level of w
 
   369       for(g->first(e,w); g->valid(e); g->next(e)) {
 
   371 	if ( (*flow)[e] >= (*capacity)[e] ) continue; 
 
   374 	if( lev > level[v] ) { //Push is allowed now
 
   376 	  if ( excess[v]<=0 && v!=t && v!=s ) {
 
   378 	    active[lev_v].push(v);
 
   381 	  Num cap=(*capacity)[e];
 
   385 	  if ( remcap >= exc ) { //A nonsaturating push.
 
   387 	    flow->set(e, flo+exc);
 
   388 	    excess.set(v, excess[v]+exc);
 
   392 	  } else { //A saturating push.
 
   394 	    excess.set(v, excess[v]+remcap);
 
   397 	} else if ( newlevel > level[v] ) newlevel = level[v];
 
   402 	for(g->first(e,w); g->valid(e); g->next(e)) {
 
   404 	  if( (*flow)[e] <= 0 ) continue; 
 
   407 	  if( lev > level[v] ) { //Push is allowed now
 
   409 	    if ( excess[v]<=0 && v!=t && v!=s ) {
 
   411 	      active[lev_v].push(v);
 
   416 	    if ( flo >= exc ) { //A nonsaturating push.
 
   418 	      flow->set(e, flo-exc);
 
   419 	      excess.set(v, excess[v]+exc);
 
   422 	    } else {  //A saturating push.
 
   424 	      excess.set(v, excess[v]+flo);
 
   428 	  } else if ( newlevel > level[v] ) newlevel = level[v];
 
   431       } // if w still has excess after the out edge for cycle
 
   439     void preflowPreproc ( flowEnum fe, VecStack& active, 
 
   440 			  VecNode& level_list, NNMap& left, NNMap& right ) {
 
   442 			    std::queue<Node> bfs_queue;
 
   447 				//Reverse_bfs from t, to find the starting level.
 
   451 				while (!bfs_queue.empty()) {
 
   453 				  Node v=bfs_queue.front();	
 
   458 				  for(g->first(e,v); g->valid(e); g->next(e)) {
 
   460 				    if ( level[w] == n && w != s ) {
 
   462 				      Node first=level_list[l];
 
   463 				      if ( g->valid(first) ) left.set(first,w);
 
   473 				for(g->first(e,s); g->valid(e); g->next(e)) 
 
   475 				    Num c=(*capacity)[e];
 
   476 				    if ( c <= 0 ) continue;
 
   478 				    if ( level[w] < n ) {	  
 
   479 				      if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
 
   481 				      excess.set(w, excess[w]+c);
 
   490 				//Reverse_bfs from t in the residual graph, 
 
   491 				//to find the starting level.
 
   495 				while (!bfs_queue.empty()) {
 
   497 				  Node v=bfs_queue.front();	
 
   502 				  for(g->first(e,v); g->valid(e); g->next(e)) {
 
   503 				    if ( (*capacity)[e] <= (*flow)[e] ) continue;
 
   505 				    if ( level[w] == n && w != s ) {
 
   507 				      Node first=level_list[l];
 
   508 				      if ( g->valid(first) ) left.set(first,w);
 
   516 				  for(g->first(f,v); g->valid(f); g->next(f)) {
 
   517 				    if ( 0 >= (*flow)[f] ) continue;
 
   519 				    if ( level[w] == n && w != s ) {
 
   521 				      Node first=level_list[l];
 
   522 				      if ( g->valid(first) ) left.set(first,w);
 
   533 				for(g->first(e,s); g->valid(e); g->next(e)) 
 
   535 				    Num rem=(*capacity)[e]-(*flow)[e];
 
   536 				    if ( rem <= 0 ) continue;
 
   538 				    if ( level[w] < n ) {	  
 
   539 				      if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
 
   540 				      flow->set(e, (*capacity)[e]); 
 
   541 				      excess.set(w, excess[w]+rem);
 
   546 				for(g->first(f,s); g->valid(f); g->next(f)) 
 
   548 				    if ( (*flow)[f] <= 0 ) continue;
 
   550 				    if ( level[w] < n ) {	  
 
   551 				      if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
 
   552 				      excess.set(w, excess[w]+(*flow)[f]);
 
   563     void relabel(Node w, int newlevel, VecStack& active,  
 
   564 		 VecNode& level_list, NNMap& left, 
 
   565 		 NNMap& right, int& b, int& k, bool what_heur ) 
 
   570       Node right_n=right[w];
 
   574       if ( g->valid(right_n) ) {
 
   575 	if ( g->valid(left_n) ) {
 
   576 	  right.set(left_n, right_n);
 
   577 	  left.set(right_n, left_n);
 
   579 	  level_list[lev]=right_n;   
 
   580 	  left.set(right_n, INVALID);
 
   583 	if ( g->valid(left_n) ) {
 
   584 	  right.set(left_n, INVALID);
 
   586 	  level_list[lev]=INVALID;   
 
   591       if ( !g->valid(level_list[lev]) ) {
 
   594 	for (int i=lev; i!=k ; ) {
 
   595 	  Node v=level_list[++i];
 
   596 	  while ( g->valid(v) ) {
 
   600 	  level_list[i]=INVALID;
 
   602 	    while ( !active[i].empty() ) {
 
   603 	      active[i].pop();    //FIXME: ezt szebben kene
 
   615 	if ( newlevel == n ) level.set(w,n); 
 
   617 	  level.set(w,++newlevel);
 
   618 	  active[newlevel].push(w);
 
   619 	  if ( what_heur ) b=newlevel;
 
   620 	  if ( k < newlevel ) ++k;      //now k=newlevel
 
   621 	  Node first=level_list[newlevel];
 
   622 	  if ( g->valid(first) ) left.set(first,w);
 
   625 	  level_list[newlevel]=w;
 
   632     template<typename MapGraphWrapper> 
 
   635       const MapGraphWrapper* g;
 
   636       typename MapGraphWrapper::template NodeMap<int> dist; 
 
   638       DistanceMap(MapGraphWrapper& _g) : g(&_g), dist(*g, g->nodeNum()) { }
 
   639       void set(const typename MapGraphWrapper::Node& n, int a) { 
 
   642       int operator[](const typename MapGraphWrapper::Node& n) 
 
   644       //       int get(const typename MapGraphWrapper::Node& n) const { 
 
   646       //       bool get(const typename MapGraphWrapper::Edge& e) const { 
 
   647       // 	return (dist.get(g->tail(e))<dist.get(g->head(e))); }
 
   648       bool operator[](const typename MapGraphWrapper::Edge& e) const { 
 
   649 	return (dist[g->tail(e)]<dist[g->head(e)]); 
 
   656   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
 
   657   void MaxFlow<Graph, Num, CapMap, FlowMap>::preflowPhase1( flowEnum fe ) 
 
   660     int heur0=(int)(H0*n);  //time while running 'bound decrease' 
 
   661     int heur1=(int)(H1*n);  //time while running 'highest label'
 
   662     int heur=heur1;         //starting time interval (#of relabels)
 
   666     //It is 0 in case 'bound decrease' and 1 in case 'highest label'
 
   669     //Needed for 'bound decrease', true means no active nodes are above bound b.
 
   671     int k=n-2;  //bound on the highest level under n containing a node
 
   672     int b=k;    //bound on the highest level under n of an active node
 
   676     NNMap left(*g, INVALID);
 
   677     NNMap right(*g, INVALID);
 
   678     VecNode level_list(n,INVALID);
 
   679     //List of the nodes in level i<n, set to n.
 
   682     for(g->first(v); g->valid(v); g->next(v)) level.set(v,n);
 
   683     //setting each node to level n
 
   688 	//counting the excess
 
   690 	for(g->first(v); g->valid(v); g->next(v)) {
 
   694 	  for(g->first(e,v); g->valid(e); g->next(e)) exc+=(*flow)[e];
 
   696 	  for(g->first(f,v); g->valid(f); g->next(f)) exc-=(*flow)[f];
 
   700 	  //putting the active nodes into the stack
 
   702 	  if ( exc > 0 && lev < n && v != t ) active[lev].push(v);
 
   708 	//Counting the excess of t
 
   712 	for(g->first(e,t); g->valid(e); g->next(e)) exc+=(*flow)[e];
 
   714 	for(g->first(f,t); g->valid(f); g->next(f)) exc-=(*flow)[f];
 
   724     preflowPreproc( fe, active, level_list, left, right );
 
   725     //End of preprocessing 
 
   728     //Push/relabel on the highest level active nodes.
 
   731 	if ( !what_heur && !end && k > 0 ) {
 
   737       if ( active[b].empty() ) --b; 
 
   740 	Node w=active[b].top();
 
   742 	int newlevel=push(w,active);
 
   743 	if ( excess[w] > 0 ) relabel(w, newlevel, active, level_list, 
 
   744 				     left, right, b, k, what_heur);
 
   747 	if ( numrelabel >= heur ) {
 
   765   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
 
   766   void MaxFlow<Graph, Num, CapMap, FlowMap>::preflowPhase2() 
 
   769     int k=n-2;  //bound on the highest level under n containing a node
 
   770     int b=k;    //bound on the highest level under n of an active node
 
   774     std::queue<Node> bfs_queue;
 
   777     while (!bfs_queue.empty()) {
 
   779       Node v=bfs_queue.front();	
 
   784       for(g->first(e,v); g->valid(e); g->next(e)) {
 
   785 	if ( (*capacity)[e] <= (*flow)[e] ) continue;
 
   787 	if ( level[u] >= n ) { 
 
   790 	  if ( excess[u] > 0 ) active[l].push(u);
 
   795       for(g->first(f,v); g->valid(f); g->next(f)) {
 
   796 	if ( 0 >= (*flow)[f] ) continue;
 
   798 	if ( level[u] >= n ) { 
 
   801 	  if ( excess[u] > 0 ) active[l].push(u);
 
   811       if ( active[b].empty() ) --b; 
 
   813 	Node w=active[b].top();
 
   815 	int newlevel=push(w,active);	  
 
   818 	if ( excess[w] > 0 ) {
 
   819 	  level.set(w,++newlevel);
 
   820 	  active[newlevel].push(w);
 
   823       }  // if stack[b] is nonempty
 
   829   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
 
   830   bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnShortestPath() 
 
   832     ResGW res_graph(*g, *capacity, *flow);
 
   835     //ReachedMap level(res_graph);
 
   836     FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
 
   837     BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
 
   838     bfs.pushAndSetReached(s);
 
   840     typename ResGW::template NodeMap<ResGWEdge> pred(res_graph); 
 
   841     pred.set(s, INVALID);
 
   843     typename ResGW::template NodeMap<Num> free(res_graph);
 
   845     //searching for augmenting path
 
   846     while ( !bfs.finished() ) { 
 
   847       ResGWOutEdgeIt e=bfs;
 
   848       if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
 
   849 	Node v=res_graph.tail(e);
 
   850 	Node w=res_graph.head(e);
 
   852 	if (res_graph.valid(pred[v])) {
 
   853 	  free.set(w, std::min(free[v], res_graph.resCap(e)));
 
   855 	  free.set(w, res_graph.resCap(e)); 
 
   857 	if (res_graph.head(e)==t) { _augment=true; break; }
 
   861     } //end of searching augmenting path
 
   865       Num augment_value=free[t];
 
   866       while (res_graph.valid(pred[n])) { 
 
   868 	res_graph.augment(e, augment_value); 
 
   884   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
 
   885   template<typename MutableGraph> 
 
   886   bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow() 
 
   888     typedef MutableGraph MG;
 
   891     ResGW res_graph(*g, *capacity, *flow);
 
   893     //bfs for distances on the residual graph
 
   894     //ReachedMap level(res_graph);
 
   895     FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
 
   896     BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
 
   897     bfs.pushAndSetReached(s);
 
   898     typename ResGW::template NodeMap<int> 
 
   899       dist(res_graph); //filled up with 0's
 
   901     //F will contain the physical copy of the residual graph
 
   902     //with the set of edges which are on shortest paths
 
   904     typename ResGW::template NodeMap<typename MG::Node> 
 
   905       res_graph_to_F(res_graph);
 
   907       typename ResGW::NodeIt n;
 
   908       for(res_graph.first(n); res_graph.valid(n); res_graph.next(n)) {
 
   909 	res_graph_to_F.set(n, F.addNode());
 
   913     typename MG::Node sF=res_graph_to_F[s];
 
   914     typename MG::Node tF=res_graph_to_F[t];
 
   915     typename MG::template EdgeMap<ResGWEdge> original_edge(F);
 
   916     typename MG::template EdgeMap<Num> residual_capacity(F);
 
   918     while ( !bfs.finished() ) { 
 
   919       ResGWOutEdgeIt e=bfs;
 
   920       if (res_graph.valid(e)) {
 
   921 	if (bfs.isBNodeNewlyReached()) {
 
   922 	  dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1);
 
   923 	  typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)], res_graph_to_F[res_graph.head(e)]);
 
   924 	  original_edge.update();
 
   925 	  original_edge.set(f, e);
 
   926 	  residual_capacity.update();
 
   927 	  residual_capacity.set(f, res_graph.resCap(e));
 
   929 	  if (dist[res_graph.head(e)]==(dist[res_graph.tail(e)]+1)) {
 
   930 	    typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)], res_graph_to_F[res_graph.head(e)]);
 
   931 	    original_edge.update();
 
   932 	    original_edge.set(f, e);
 
   933 	    residual_capacity.update();
 
   934 	    residual_capacity.set(f, res_graph.resCap(e));
 
   939     } //computing distances from s in the residual graph
 
   945       //computing blocking flow with dfs
 
   946       DfsIterator< MG, typename MG::template NodeMap<bool> > dfs(F);
 
   947       typename MG::template NodeMap<typename MG::Edge> pred(F);
 
   948       pred.set(sF, INVALID);
 
   949       //invalid iterators for sources
 
   951       typename MG::template NodeMap<Num> free(F);
 
   953       dfs.pushAndSetReached(sF);      
 
   954       while (!dfs.finished()) {
 
   956 	if (F.valid(/*typename MG::OutEdgeIt*/(dfs))) {
 
   957 	  if (dfs.isBNodeNewlyReached()) {
 
   958 	    typename MG::Node v=F.aNode(dfs);
 
   959 	    typename MG::Node w=F.bNode(dfs);
 
   961 	    if (F.valid(pred[v])) {
 
   962 	      free.set(w, std::min(free[v], residual_capacity[dfs]));
 
   964 	      free.set(w, residual_capacity[dfs]); 
 
   973 	    F.erase(/*typename MG::OutEdgeIt*/(dfs));
 
   979 	typename MG::Node n=tF;
 
   980 	Num augment_value=free[tF];
 
   981 	while (F.valid(pred[n])) { 
 
   982 	  typename MG::Edge e=pred[n];
 
   983 	  res_graph.augment(original_edge[e], augment_value); 
 
   985 	  if (residual_capacity[e]==augment_value) 
 
   988 	    residual_capacity.set(e, residual_capacity[e]-augment_value);
 
  1002   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
 
  1003   bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow2() 
 
  1005     bool _augment=false;
 
  1007     ResGW res_graph(*g, *capacity, *flow);
 
  1009     //ReachedMap level(res_graph);
 
  1010     FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
 
  1011     BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
 
  1013     bfs.pushAndSetReached(s);
 
  1014     DistanceMap<ResGW> dist(res_graph);
 
  1015     while ( !bfs.finished() ) { 
 
  1016       ResGWOutEdgeIt e=bfs;
 
  1017       if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
 
  1018 	dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1);
 
  1021     } //computing distances from s in the residual graph
 
  1023       //Subgraph containing the edges on some shortest paths
 
  1024     ConstMap<typename ResGW::Node, bool> true_map(true);
 
  1025     typedef SubGraphWrapper<ResGW, ConstMap<typename ResGW::Node, bool>, 
 
  1026       DistanceMap<ResGW> > FilterResGW;
 
  1027     FilterResGW filter_res_graph(res_graph, true_map, dist);
 
  1029     //Subgraph, which is able to delete edges which are already 
 
  1031     typename FilterResGW::template NodeMap<typename FilterResGW::OutEdgeIt> 
 
  1032       first_out_edges(filter_res_graph);
 
  1033     typename FilterResGW::NodeIt v;
 
  1034     for(filter_res_graph.first(v); filter_res_graph.valid(v); 
 
  1035 	filter_res_graph.next(v)) 
 
  1037  	typename FilterResGW::OutEdgeIt e;
 
  1038  	filter_res_graph.first(e, v);
 
  1039  	first_out_edges.set(v, e);
 
  1041     typedef ErasingFirstGraphWrapper<FilterResGW, typename FilterResGW::
 
  1042       template NodeMap<typename FilterResGW::OutEdgeIt> > ErasingResGW;
 
  1043     ErasingResGW erasing_res_graph(filter_res_graph, first_out_edges);
 
  1045     bool __augment=true;
 
  1050       //computing blocking flow with dfs
 
  1051       DfsIterator< ErasingResGW, 
 
  1052 	typename ErasingResGW::template NodeMap<bool> > 
 
  1053 	dfs(erasing_res_graph);
 
  1054       typename ErasingResGW::
 
  1055 	template NodeMap<typename ErasingResGW::OutEdgeIt> 
 
  1056 	pred(erasing_res_graph); 
 
  1057       pred.set(s, INVALID);
 
  1058       //invalid iterators for sources
 
  1060       typename ErasingResGW::template NodeMap<Num> 
 
  1061 	free1(erasing_res_graph);
 
  1063       dfs.pushAndSetReached(
 
  1064 			    typename ErasingResGW::Node(
 
  1065 							typename FilterResGW::Node(
 
  1066 										   typename ResGW::Node(s)
 
  1070       while (!dfs.finished()) {
 
  1072 	if (erasing_res_graph.valid(
 
  1073 				    typename ErasingResGW::OutEdgeIt(dfs))) 
 
  1075   	    if (dfs.isBNodeNewlyReached()) {
 
  1077  	      typename ErasingResGW::Node v=erasing_res_graph.aNode(dfs);
 
  1078  	      typename ErasingResGW::Node w=erasing_res_graph.bNode(dfs);
 
  1080  	      pred.set(w, /*typename ErasingResGW::OutEdgeIt*/(dfs));
 
  1081  	      if (erasing_res_graph.valid(pred[v])) {
 
  1082  		free1.set(w, std::min(free1[v], res_graph.resCap(
 
  1083 								 typename ErasingResGW::OutEdgeIt(dfs))));
 
  1085  		free1.set(w, res_graph.resCap(
 
  1086 					      typename ErasingResGW::OutEdgeIt(dfs))); 
 
  1095  	      erasing_res_graph.erase(dfs);
 
  1101 	typename ErasingResGW::Node n=typename FilterResGW::Node(typename ResGW::Node(t));
 
  1102 	// 	  typename ResGW::NodeMap<Num> a(res_graph);
 
  1103 	// 	  typename ResGW::Node b;
 
  1105 	// 	  typename FilterResGW::NodeMap<Num> a1(filter_res_graph);
 
  1106 	// 	  typename FilterResGW::Node b1;
 
  1108 	// 	  typename ErasingResGW::NodeMap<Num> a2(erasing_res_graph);
 
  1109 	// 	  typename ErasingResGW::Node b2;
 
  1111 	Num augment_value=free1[n];
 
  1112 	while (erasing_res_graph.valid(pred[n])) { 
 
  1113 	  typename ErasingResGW::OutEdgeIt e=pred[n];
 
  1114 	  res_graph.augment(e, augment_value);
 
  1115 	  n=erasing_res_graph.tail(e);
 
  1116 	  if (res_graph.resCap(e)==0)
 
  1117 	    erasing_res_graph.erase(e);
 
  1121     } //while (__augment) 
 
  1130 } //END OF NAMESPACE LEMON
 
  1132 #endif //LEMON_MAX_FLOW_H