Started.
     2 #ifndef HUGO_DIJKSTRA_H
 
     3 #define HUGO_DIJKSTRA_H
 
     7 ///\brief Dijkstra algorithm.
 
    17   ///%Dijkstra algorithm class.
 
    19   ///This class provides an efficient implementation of %Dijkstra algorithm.
 
    20   ///The edge lengths are passed to the algorithm using a
 
    21   ///\ref ReadMapSkeleton "readable map",
 
    22   ///so it is easy to change it to any kind of length.
 
    24   ///The type of the length is determined by the \c ValueType of the length map.
 
    26   ///It is also possible to change the underlying priority heap.
 
    28   ///\param Graph The graph type the algorithm runs on.
 
    29   ///\param LengthMap This read-only
 
    32   ///lengths of the edges. It is read once for each edge, so the map
 
    33   ///may involve in relatively time consuming process to compute the edge
 
    34   ///length if it is necessary. The default map type is
 
    35   ///\ref GraphSkeleton::EdgeMap "Graph::EdgeMap<int>"
 
    36   ///\param Heap The heap type used by the %Dijkstra
 
    37   ///algorithm. The default
 
    38   ///is using \ref BinHeap "binary heap".
 
    40   ///\author Jacint Szabo
 
    42   template <typename Graph,
 
    46   template <typename Graph,
 
    47 	    typename LengthMap=typename Graph::template EdgeMap<int>,
 
    48 	    template <class,class,class> class Heap = BinHeap >
 
    52     typedef typename Graph::Node Node;
 
    53     typedef typename Graph::NodeIt NodeIt;
 
    54     typedef typename Graph::Edge Edge;
 
    55     typedef typename Graph::OutEdgeIt OutEdgeIt;
 
    57     typedef typename LengthMap::ValueType ValueType;
 
    58     typedef typename Graph::template NodeMap<Edge> PredMap;
 
    59     typedef typename Graph::template NodeMap<Node> PredNodeMap;
 
    60     typedef typename Graph::template NodeMap<ValueType> DistMap;
 
    64     const LengthMap& length;
 
    66     PredNodeMap pred_node;
 
    71     Dijkstra(const Graph& _G, const LengthMap& _length) :
 
    72       G(_G), length(_length), predecessor(_G), pred_node(_G), distance(_G) { }
 
    76     ///The distance of a node from the root.
 
    78     ///Returns the distance of a node from the root.
 
    79     ///\pre \ref run() must be called before using this function.
 
    80     ///\warning If node \c v in unreachable from the root the return value
 
    81     ///of this funcion is undefined.
 
    82     ValueType dist(Node v) const { return distance[v]; }
 
    84     ///Returns the previous edge of the shortest path tree.
 
    86     ///For a node \c v it returns the previous edge of the shortest path tree,
 
    87     ///i.e. it returns the last edge from a shortest path from the root to \c
 
    88     ///v. It is INVALID if \c v is unreachable from the root or if \c v=s. The
 
    89     ///shortest path tree used here is equal to the shortest path tree used in
 
    90     ///\ref predNode(Node v).  \pre \ref run() must be called before using
 
    92     Edge pred(Node v) const { return predecessor[v]; }
 
    94     ///Returns the previous node of the shortest path tree.
 
    96     ///For a node \c v it returns the previous node of the shortest path tree,
 
    97     ///i.e. it returns the last but one node from a shortest path from the
 
    98     ///root to \c /v. It is INVALID if \c v is unreachable from the root or if
 
    99     ///\c v=s. The shortest path tree used here is equal to the shortest path
 
   100     ///tree used in \ref pred(Node v).  \pre \ref run() must be called before
 
   101     ///using this function.
 
   102     Node predNode(Node v) const { return pred_node[v]; }
 
   104     ///Returns a reference to the NodeMap of distances.
 
   106     ///Returns a reference to the NodeMap of distances. \pre \ref run() must
 
   107     ///be called before using this function.
 
   108     const DistMap &distMap() const { return distance;}
 
   110     ///Returns a reference to the shortest path tree map.
 
   112     ///Returns a reference to the NodeMap of the edges of the
 
   113     ///shortest path tree.
 
   114     ///\pre \ref run() must be called before using this function.
 
   115     const PredMap &predMap() const { return predecessor;}
 
   117     ///Returns a reference to the map of nodes of shortest paths.
 
   119     ///Returns a reference to the NodeMap of the last but one nodes of the
 
   120     ///shortest path tree.
 
   121     ///\pre \ref run() must be called before using this function.
 
   122     const PredNodeMap &predNodeMap() const { return pred_node;}
 
   124     ///Checks if a node is reachable from the root.
 
   126     ///Returns \c true if \c v is reachable from the root.
 
   127     ///\warning the root node is reported to be unreached!
 
   128     ///\todo Is this what we want?
 
   129     ///\pre \ref run() must be called before using this function.
 
   131     bool reached(Node v) { return G.valid(predecessor[v]); }
 
   136   // **********************************************************************
 
   138   // **********************************************************************
 
   140   ///Runs %Dijkstra algorithm from node the root.
 
   142   ///This method runs the %Dijkstra algorithm from a root node \c s
 
   145   ///shortest path to each node. The algorithm computes
 
   146   ///- The shortest path tree.
 
   147   ///- The distance of each node from the root.
 
   148   template <typename Graph, typename LengthMap,
 
   149 	    template<class,class,class> class Heap >
 
   150   void Dijkstra<Graph,LengthMap,Heap>::run(Node s) {
 
   153     for ( G.first(u) ; G.valid(u) ; G.next(u) ) {
 
   154       predecessor.set(u,INVALID);
 
   155       pred_node.set(u,INVALID);
 
   158     typename Graph::template NodeMap<int> heap_map(G,-1);
 
   160     Heap<Node, ValueType, typename Graph::template NodeMap<int> > 
 
   165       while ( !heap.empty() ) {
 
   168 	ValueType oldvalue=heap[v];
 
   170 	distance.set(v, oldvalue);
 
   172 	{ //FIXME this bracket is for e to be local
 
   175 	    G.valid(e); G.next(e)) {
 
   178 	  switch(heap.state(w)) {
 
   180 	    heap.push(w,oldvalue+length[e]); 
 
   181 	    predecessor.set(w,e);
 
   185 	    if ( oldvalue+length[e] < heap[w] ) {
 
   186 	      heap.decrease(w, oldvalue+length[e]); 
 
   187 	      predecessor.set(w,e);
 
   195       } //FIXME tis bracket
 
   201 } //END OF NAMESPACE HUGO