2 #ifndef LEMON_MINCOSTFLOW_H
 
     3 #define LEMON_MINCOSTFLOW_H
 
     7 ///\brief An algorithm for finding the minimum cost flow of given value in an uncapacitated network
 
     9 #include <lemon/dijkstra.h>
 
    10 #include <lemon/graph_wrapper.h>
 
    11 #include <lemon/maps.h>
 
    15 #include <lemon/for_each_macros.h>
 
    16 #include <lemon/unionfind.h>
 
    17 #include <lemon/bin_heap.h>
 
    25   ///\brief Implementation of an algorithm for solving the minimum cost general
 
    26   /// flow problem in an uncapacitated network
 
    29   /// The class \ref lemon::MinCostFlow "MinCostFlow" implements
 
    30   /// an algorithm for solving the following general minimum cost flow problem>
 
    34   /// \warning It is assumed here that the problem has a feasible solution
 
    36   /// The range of the cost (weight) function is nonnegative reals but 
 
    37   /// the range of capacity function is the set of nonnegative integers. 
 
    38   /// It is not a polinomial time algorithm for counting the minimum cost
 
    39   /// maximal flow, since it counts the minimum cost flow for every value 0..M
 
    40   /// where \c M is the value of the maximal flow.
 
    42   ///\author Attila Bernath
 
    43   template <typename Graph, typename CostMap, typename SupplyDemandMap>
 
    46     typedef typename CostMap::Value Cost;
 
    49     typedef typename SupplyDemandMap::Value SupplyDemand;
 
    51     typedef typename Graph::Node Node;
 
    52     typedef typename Graph::NodeIt NodeIt;
 
    53     typedef typename Graph::Edge Edge;
 
    54     typedef typename Graph::OutEdgeIt OutEdgeIt;
 
    55     typedef typename Graph::template EdgeMap<SupplyDemand> FlowMap;
 
    56     typedef ConstMap<Edge,SupplyDemand> ConstEdgeMap;
 
    58     //    typedef ConstMap<Edge,int> ConstMap;
 
    60     typedef ResGraphWrapper<const Graph,int,ConstEdgeMap,FlowMap> ResGraph;
 
    61     typedef typename ResGraph::Edge ResGraphEdge;
 
    64       //typedef typename ResGraph::template NodeMap<Cost> NodeMap;
 
    65       typedef typename Graph::template NodeMap<Cost> NodeMap;
 
    66       const ResGraph& res_graph;
 
    67       //      const EdgeIntMap& rev;
 
    71       typedef typename CostMap::Key Key;
 
    72       typedef typename CostMap::Value Value;
 
    74       Value operator[](typename ResGraph::Edge e) const {     
 
    75 	if (res_graph.forward(e))
 
    76 	  return  ol[e]-(pot[res_graph.target(e)]-pot[res_graph.source(e)]);   
 
    78 	  return -ol[e]-(pot[res_graph.target(e)]-pot[res_graph.source(e)]);   
 
    81       ModCostMap(const ResGraph& _res_graph,
 
    82 		   const CostMap &o,  const NodeMap &p) : 
 
    83 	res_graph(_res_graph), /*rev(_rev),*/ ol(o), pot(p){}; 
 
    92     const SupplyDemandMap& supply_demand;//supply or demand of nodes
 
    99     //To store the potential (dual variables)
 
   100     typedef typename Graph::template NodeMap<Cost> PotentialMap;
 
   101     PotentialMap potential;
 
   110    MinCostFlow(Graph& _graph, CostMap& _cost, SupplyDemandMap& _supply_demand):
 
   113      supply_demand(_supply_demand), 
 
   118     ///Runs the algorithm.
 
   120     ///Runs the algorithm.
 
   122     ///\todo May be it does make sense to be able to start with a nonzero 
 
   123     /// feasible primal-dual solution pair as well.
 
   126       //To store excess-deficit values
 
   127       SupplyDemandMap excess_deficit(graph);
 
   129       //Resetting variables from previous runs
 
   133       typedef typename Graph::template NodeMap<int> HeapMap;
 
   134       typedef BinHeap< Node, SupplyDemand, typename Graph::template NodeMap<int>,
 
   135 	std::greater<SupplyDemand> > 	HeapType;
 
   137       //A heap for the excess nodes
 
   138       HeapMap excess_nodes_map(graph,-1);
 
   139       HeapType excess_nodes(excess_nodes_map);
 
   141       //A heap for the deficit nodes
 
   142       HeapMap deficit_nodes_map(graph,-1);
 
   143       HeapType deficit_nodes(deficit_nodes_map);
 
   145       //A container to store nonabundant arcs
 
   146       std::list<Edge> nonabundant_arcs;
 
   149       FOR_EACH_LOC(typename Graph::EdgeIt, e, graph){
 
   151 	nonabundant_arcs.push_back(e);
 
   154       //Initial value for delta
 
   155       SupplyDemand delta = 0;
 
   157       typedef UnionFindEnum<Node, Graph::template NodeMap> UFE;
 
   159       //A union-find structure to store the abundant components
 
   160       typename UFE::MapType abund_comp_map(graph);
 
   161       UFE abundant_components(abund_comp_map);
 
   165       FOR_EACH_LOC(typename Graph::NodeIt, n, graph){
 
   166        	excess_deficit.set(n,supply_demand[n]);
 
   168 	if (excess_deficit[n] > 0){
 
   169 	  excess_nodes.push(n,excess_deficit[n]);
 
   172 	if (excess_deficit[n] < 0){
 
   173 	  deficit_nodes.push(n, - excess_deficit[n]);
 
   175 	//Finding out starting value of delta
 
   176 	if (delta < abs(excess_deficit[n])){
 
   177 	  delta = abs(excess_deficit[n]);
 
   179 	//Initialize the copy of the Dijkstra potential to zero
 
   181 	//Every single point is an abundant component initially 
 
   182 	abundant_components.insert(n);
 
   185       //It'll be allright as an initial value, though this value 
 
   186       //can be the maximum deficit here
 
   187       SupplyDemand max_excess = delta;
 
   189       ///\bug This is a serious cheat here, before we have an uncapacitated ResGraph
 
   190       ConstEdgeMap const_inf_map(MAXINT);
 
   192       //We need a residual graph which is uncapacitated
 
   193       ResGraph res_graph(graph, const_inf_map, flow);
 
   195       //An EdgeMap to tell which arcs are abundant
 
   196       typename Graph::template EdgeMap<bool> abundant_arcs(graph);
 
   198       //Let's construct the sugraph consisting only of the abundant edges
 
   199       typedef ConstMap< typename Graph::Node, bool > ConstNodeMap;
 
   201       ConstNodeMap const_true_map(true);
 
   202       typedef SubGraphWrapper< const Graph, ConstNodeMap, 
 
   203 	 typename Graph::template EdgeMap<bool> > 
 
   205       AbundantGraph abundant_graph(graph, const_true_map, abundant_arcs );
 
   207       //Let's construct the residual graph for the abundant graph
 
   208       typedef ResGraphWrapper<const AbundantGraph,int,ConstEdgeMap,FlowMap> 
 
   210       //Again uncapacitated
 
   211       ResAbGraph res_ab_graph(abundant_graph, const_inf_map, flow);
 
   213       //We need things for the bfs
 
   214       typename ResAbGraph::template NodeMap<bool> bfs_reached(res_ab_graph);
 
   215       typename ResAbGraph::template NodeMap<typename ResAbGraph::Edge> 
 
   216 	bfs_pred(res_ab_graph); 
 
   217       NullMap<typename ResAbGraph::Node, int> bfs_dist_dummy;
 
   219       //BfsIterator<ResAbGraph, typename ResAbGraph::template NodeMap<bool> > 
 
   220       //izebize(res_ab_graph, bfs_reached);
 
   221       //We want to run bfs-es (more) on this graph 'res_ab_graph'
 
   222       Bfs < const ResAbGraph , 
 
   223 	typename ResAbGraph::template NodeMap<bool>, 
 
   224 	typename ResAbGraph::template NodeMap<typename ResAbGraph::Edge>,
 
   225 	NullMap<typename ResAbGraph::Node, int> > 
 
   226 	bfs(res_ab_graph, bfs_reached, bfs_pred, bfs_dist_dummy);
 
   227       /*This is what Marci wants for a bfs
 
   228 	template <typename Graph, 
 
   229 	    typename ReachedMap=typename Graph::template NodeMap<bool>, 
 
   231 	    =typename Graph::template NodeMap<typename Graph::Edge>, 
 
   232 	    typename DistMap=typename Graph::template NodeMap<int> > 
 
   233 	    class Bfs : public BfsIterator<Graph, ReachedMap> {
 
   237       ModCostMap mod_cost(res_graph, cost, potential);
 
   239       Dijkstra<ResGraph, ModCostMap> dijkstra(res_graph, mod_cost);
 
   241       //We will use the number of the nodes of the graph often
 
   242       int number_of_nodes = graph.nodeNum();
 
   244       while (max_excess > 0){
 
   246 	//Reset delta if still too big
 
   247 	if (8*number_of_nodes*max_excess <= delta){
 
   253 	 * Beginning of the delta scaling phase 
 
   257 	  SupplyDemand buf=8*number_of_nodes*delta;
 
   258 	  typename std::list<Edge>::iterator i = nonabundant_arcs.begin();
 
   259 	  while ( i != nonabundant_arcs.end() ){
 
   261 	      Node a = abundant_components.find(res_graph.target(*i));
 
   262 	      Node b = abundant_components.find(res_graph.source(*i));
 
   265 		abundant_components.join(a,b);
 
   266 		//We want to push the smaller
 
   267 		//Which has greater absolut value excess/deficit
 
   268 		Node root=(abs(excess_deficit[a])>abs(excess_deficit[b]))?a:b;
 
   270 		Node non_root = ( a == root ) ? b : a ;
 
   271 		abundant_components.makeRep(root);
 
   272 		SupplyDemand qty_to_augment = abs(excess_deficit[non_root]); 
 
   273 		//Push the positive value
 
   274 		if (excess_deficit[non_root] < 0)
 
   275 		  swap(root, non_root);
 
   276 		//If the non_root node has excess/deficit at all
 
   277 		if (qty_to_augment>0){
 
   278 		  //Find path and augment
 
   279 		  bfs.run(typename AbundantGraph::Node(non_root));
 
   280 		  //root should be reached
 
   282 		  //Augmenting on the found path
 
   287 		    n = res_graph.source(e);
 
   288 		    res_graph.augment(e,qty_to_augment);
 
   291 		  //We know that non_root had positive excess
 
   292 		  excess_nodes.set(non_root,
 
   293 				   excess_nodes[non_root] - qty_to_augment);
 
   294 		  //But what about root node
 
   295 		  //It might have been positive and so became larger
 
   296 		  if (excess_deficit[root]>0){
 
   297 		    excess_nodes.set(root, 
 
   298 				     excess_nodes[root] + qty_to_augment);
 
   301 		    //Or negative but not turned into positive
 
   302 		    deficit_nodes.set(root, 
 
   303 				      deficit_nodes[root] - qty_to_augment);
 
   306 		  //Update the excess_deficit map
 
   307 		  excess_deficit[non_root] -= qty_to_augment;
 
   308 		  excess_deficit[root] += qty_to_augment;
 
   314 	      //Marci and Zsolt says I shouldn't do such things
 
   315 	      nonabundant_arcs.erase(i++);
 
   316 	      abundant_arcs[*i] = true;
 
   324 	Node s = excess_nodes.top(); 
 
   325 	max_excess = excess_nodes[s];
 
   326 	Node t = deficit_nodes.top(); 
 
   327 	if (max_excess < deficit_nodes[t]){
 
   328 	  max_excess = deficit_nodes[t];
 
   332 	while(max_excess > (number_of_nodes-1)*delta/number_of_nodes){
 
   340 	  /*We know from theory that t can be reached
 
   341 	  if (!dijkstra.reached(t)){
 
   342 	    //There are no k paths from s to t
 
   347 	  //We have to change the potential
 
   348 	  FOR_EACH_LOC(typename ResGraph::NodeIt, n, res_graph){
 
   349 	    potential[n] += dijkstra.distMap()[n];
 
   353 	  //Augmenting on the sortest path
 
   357 	    e = dijkstra.pred(n);
 
   358 	    n = dijkstra.predNode(n);
 
   359 	    res_graph.augment(e,delta);
 
   361 	    //Let's update the total cost
 
   362 	    if (res_graph.forward(e))
 
   363 	      total_cost += cost[e];
 
   365 	      total_cost -= cost[e];	    
 
   369 	  //Update the excess_deficit map
 
   370 	  excess_deficit[s] -= delta;
 
   371 	  excess_deficit[t] += delta;
 
   374 	  //Update the excess_nodes heap
 
   375 	  if (delta > excess_nodes[s]){
 
   376 	    if (delta > excess_nodes[s])
 
   377 	      deficit_nodes.push(s,delta - excess_nodes[s]);
 
   382 	    excess_nodes.set(s, excess_nodes[s] - delta);
 
   384 	  //Update the deficit_nodes heap
 
   385 	  if (delta > deficit_nodes[t]){
 
   386 	    if (delta > deficit_nodes[t])
 
   387 	      excess_nodes.push(t,delta - deficit_nodes[t]);
 
   392 	    deficit_nodes.set(t, deficit_nodes[t] - delta);
 
   394 	  //Dijkstra part ends here
 
   396 	  //Choose s and t again
 
   397 	  s = excess_nodes.top(); 
 
   398 	  max_excess = excess_nodes[s];
 
   399 	  t = deficit_nodes.top(); 
 
   400 	  if (max_excess < deficit_nodes[t]){
 
   401 	    max_excess = deficit_nodes[t];
 
   407 	 * End of the delta scaling phase 
 
   410 	//Whatever this means
 
   413 	/*This is not necessary here
 
   414 	//Update the max_excess
 
   416 	FOR_EACH_LOC(typename Graph::NodeIt, n, graph){
 
   417 	  if (max_excess < excess_deficit[n]){
 
   418 	    max_excess = excess_deficit[n];
 
   424       }//while(max_excess > 0)
 
   433     ///This function gives back the total cost of the found paths.
 
   434     ///Assumes that \c run() has been run and nothing changed since then.
 
   439     ///Returns a const reference to the EdgeMap \c flow. \pre \ref run() must
 
   440     ///be called before using this function.
 
   441     const FlowMap &getFlow() const { return flow;}
 
   443   ///Returns a const reference to the NodeMap \c potential (the dual solution).
 
   444     /// \pre \ref run() must be called before using this function.
 
   445     const PotentialMap &getPotential() const { return potential;}
 
   447     ///This function checks, whether the given solution is optimal
 
   448     ///Running after a \c run() should return with true
 
   449     ///In this "state of the art" this only checks optimality, doesn't bother with feasibility
 
   451     ///\todo Is this OK here?
 
   452     bool checkComplementarySlackness(){
 
   455       FOR_EACH_LOC(typename Graph::EdgeIt, e, graph){
 
   457 	mod_pot = cost[e]-potential[graph.target(e)]+potential[graph.source(e)];
 
   459 	//	std::cout << fl_e << std::endl;
 
   460 	if (mod_pot > 0 && fl_e != 0)
 
   468     //For testing purposes only
 
   469     //Lists the node_properties
 
   470     void write_property_vector(const SupplyDemandMap& a,
 
   471 			       char* prop_name="property"){
 
   472       FOR_EACH_LOC(typename Graph::NodeIt, i, graph){
 
   473 	cout<<"Node id.: "<<graph.id(i)<<", "<<prop_name<<" value: "<<a[i]<<endl;
 
   478     bool checkFeasibility(){
 
   479       SupplyDemandMap supdem(graph);
 
   480       FOR_EACH_LOC(typename Graph::EdgeIt, e, graph){
 
   486 	supdem[graph.source(e)] += flow[e];
 
   487 	supdem[graph.target(e)] -= flow[e];
 
   489       //write_property_vector(supdem, "supdem");
 
   490       //write_property_vector(supply_demand, "supply_demand");
 
   492       FOR_EACH_LOC(typename Graph::NodeIt, n, graph){
 
   494 	if ( supdem[n] != supply_demand[n]){
 
   495 	  //cout<<"Node id.: "<<graph.id(n)<<" : "<<supdem[n]<<", should be: "<<supply_demand[n]<<endl;
 
   503     bool checkOptimality(){
 
   504       return checkFeasibility() && checkComplementarySlackness();
 
   507   }; //class MinCostFlow
 
   513 #endif //LEMON_MINCOSTFLOW_H