2 #ifndef HUGO_MINCOSTFLOWS_H
 
     3 #define HUGO_MINCOSTFLOWS_H
 
     7 ///\brief An algorithm for finding a flow of value \c k (for small values of \c k) having minimal total cost 
 
    10 #include <hugo/dijkstra.h>
 
    11 #include <graph_wrapper.h>
 
    12 #include <hugo/maps.h>
 
    14 #include <for_each_macros.h>
 
    21   ///\brief Implementation of an algorithm for finding a flow of value \c k 
 
    22   ///(for small values of \c k) having minimal total cost between 2 nodes 
 
    25   /// The class \ref hugo::MinCostFlows "MinCostFlows" implements
 
    26   /// an algorithm for finding a flow of value \c k 
 
    27   ///(for small values of \c k) having minimal total cost  
 
    28   /// from a given source node to a given target node in an
 
    29   /// edge-weighted directed graph having nonnegative integer capacities.
 
    30   /// The range of the length (weight) function is nonnegative reals but 
 
    31   /// the range of capacity function is the set of nonnegative integers. 
 
    32   /// It is not a polinomial time algorithm for counting the minimum cost
 
    33   /// maximal flow, since it counts the minimum cost flow for every value 0..M
 
    34   /// where \c M is the value of the maximal flow.
 
    36   ///\author Attila Bernath
 
    37   template <typename Graph, typename LengthMap, typename CapacityMap>
 
    40     typedef typename LengthMap::ValueType Length;
 
    42     //Warning: this should be integer type
 
    43     typedef typename CapacityMap::ValueType Capacity;
 
    45     typedef typename Graph::Node Node;
 
    46     typedef typename Graph::NodeIt NodeIt;
 
    47     typedef typename Graph::Edge Edge;
 
    48     typedef typename Graph::OutEdgeIt OutEdgeIt;
 
    49     typedef typename Graph::template EdgeMap<int> EdgeIntMap;
 
    51     //    typedef ConstMap<Edge,int> ConstMap;
 
    53     typedef ResGraphWrapper<const Graph,int,CapacityMap,EdgeIntMap> ResGraphType;
 
    54     typedef typename ResGraphType::Edge ResGraphEdge;
 
    57       //typedef typename ResGraphType::template NodeMap<Length> NodeMap;
 
    58       typedef typename Graph::template NodeMap<Length> NodeMap;
 
    59       const ResGraphType& G;
 
    60       //      const EdgeIntMap& rev;
 
    64       typedef typename LengthMap::KeyType KeyType;
 
    65       typedef typename LengthMap::ValueType ValueType;
 
    67       ValueType operator[](typename ResGraphType::Edge e) const {     
 
    69 	  return  ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);   
 
    71 	  return -ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);   
 
    74       ModLengthMap(const ResGraphType& _G,
 
    75 		   const LengthMap &o,  const NodeMap &p) : 
 
    76 	G(_G), /*rev(_rev),*/ ol(o), pot(p){}; 
 
    83     const LengthMap& length;
 
    84     const CapacityMap& capacity;
 
    90     //To store the potentila (dual variables)
 
    91     typename Graph::template NodeMap<Length> potential;
 
    93     //Container to store found paths
 
    94     //std::vector< std::vector<Edge> > paths;
 
    95     //typedef DirPath<Graph> DPath;
 
   104     MinCostFlows(Graph& _G, LengthMap& _length, CapacityMap& _cap) : G(_G), 
 
   105       length(_length), capacity(_cap), flow(_G), potential(_G){ }
 
   108     ///Runs the algorithm.
 
   110     ///Runs the algorithm.
 
   111     ///Returns k if there are at least k edge-disjoint paths from s to t.
 
   112     ///Otherwise it returns the number of found edge-disjoint paths from s to t.
 
   113     int run(Node s, Node t, int k) {
 
   115       //Resetting variables from previous runs
 
   118       FOR_EACH_LOC(typename Graph::EdgeIt, e, G){
 
   122       FOR_EACH_LOC(typename Graph::NodeIt, n, G){
 
   123 	//cout << potential[n]<<endl;
 
   129       //We need a residual graph
 
   130       ResGraphType res_graph(G, capacity, flow);
 
   132       //Initialize the copy of the Dijkstra potential to zero
 
   134       //typename ResGraphType::template NodeMap<Length> potential(res_graph);
 
   137       ModLengthMap mod_length(res_graph, length, potential);
 
   139       Dijkstra<ResGraphType, ModLengthMap> dijkstra(res_graph, mod_length);
 
   144 	if (!dijkstra.reached(t)){
 
   145 	  //There are no k paths from s to t
 
   150 	  //We have to copy the potential
 
   151 	  typename ResGraphType::NodeIt n;
 
   152 	  for ( res_graph.first(n) ; res_graph.valid(n) ; res_graph.next(n) ) {
 
   153 	      potential[n] += dijkstra.distMap()[n];
 
   158 	//Augmenting on the sortest path
 
   162 	  e = dijkstra.pred(n);
 
   163 	  n = dijkstra.predNode(n);
 
   164 	  res_graph.augment(e,1);
 
   165 	  //Let's update the total length
 
   166 	  if (res_graph.forward(e))
 
   167 	    total_length += length[e];
 
   169 	    total_length -= length[e];	    
 
   182     ///This function gives back the total length of the found paths.
 
   183     ///Assumes that \c run() has been run and nothing changed since then.
 
   184     Length totalLength(){
 
   188     //This function checks, whether the given solution is optimal
 
   189     //Running after a \c run() should return with true
 
   190     //In this "state of the art" this only check optimality, doesn't bother with feasibility
 
   191     bool checkSolution(){
 
   194       FOR_EACH_LOC(typename Graph::EdgeIt, e, G){
 
   196 	mod_pot = length[e]-potential[G.head(e)]+potential[G.tail(e)];
 
   198 	//	std::cout << fl_e << std::endl;
 
   199 	if (0<fl_e && fl_e<capacity[e]){
 
   204 	  if (mod_pot > 0 && fl_e != 0)
 
   206 	  if (mod_pot < 0 && fl_e != capacity[e])
 
   214       ///\todo To be implemented later
 
   216     ///This function gives back the \c j-th path in argument p.
 
   217     ///Assumes that \c run() has been run and nothing changed since then.
 
   218     /// \warning It is assumed that \c p is constructed to be a path of graph \c G. If \c j is greater than the result of previous \c run, then the result here will be an empty path.
 
   219     template<typename DirPath>
 
   220     void getPath(DirPath& p, int j){
 
   222       typename DirPath::Builder B(p);
 
   223       for(typename std::vector<Edge>::iterator i=paths[j].begin(); 
 
   224 	  i!=paths[j].end(); ++i ){
 
   233   }; //class MinCostFlows
 
   239 #endif //HUGO_MINCOSTFLOW_H