3  * This file is a part of LEMON, a generic C++ optimization library
 
     5  * Copyright (C) 2003-2006
 
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
 
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
 
     9  * Permission to use, modify and distribute this software is granted
 
    10  * provided that this copyright notice appears in all copies. For
 
    11  * precise terms see the accompanying LICENSE file.
 
    13  * This software is provided "AS IS" with no warranty of any kind,
 
    14  * express or implied, and with no claim as to its suitability for any
 
    19 // This file contains a modified version of the enable_if library from BOOST.
 
    20 // See the appropriate copyright notice below.
 
    22 // Boost enable_if library
 
    24 // Copyright 2003 © The Trustees of Indiana University.
 
    26 // Use, modification, and distribution is subject to the Boost Software
 
    27 // License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
 
    28 // http://www.boost.org/LICENSE_1_0.txt)
 
    30 //    Authors: Jaakko Järvi (jajarvi at osl.iu.edu)
 
    31 //             Jeremiah Willcock (jewillco at osl.iu.edu)
 
    32 //             Andrew Lumsdaine (lums at osl.iu.edu)
 
    35 #ifndef LEMON_BITS_UTILITY_H
 
    36 #define LEMON_BITS_UTILITY_H
 
    38 #include <lemon/error.h>
 
    41 ///\brief Miscellaneous basic utilities
 
    43 ///\todo Please rethink the organisation of the basic files like this.
 
    44 ///E.g. this file might be merged with invalid.h.
 
    50   /// Basic type for defining "tags". A "YES" condition for \c enable_if.
 
    52   /// Basic type for defining "tags". A "YES" condition for \c enable_if.
 
    56   /// \todo This should go to a separate "basic_types.h" (or something)
 
    60     static const bool value = true;
 
    63   /// Basic type for defining "tags". A "NO" condition for \c enable_if.
 
    65   /// Basic type for defining "tags". A "NO" condition for \c enable_if.
 
    70     static const bool value = false;
 
    79   template <bool left, bool right>
 
    81     static const bool value = true;
 
    85   struct CTOr<false, false> {
 
    86     static const bool value = false;
 
    89   template <bool left, bool right>
 
    91     static const bool value = false;
 
    95   struct CTAnd<true, true> {
 
    96     static const bool value = true;
 
    99   template <int left, int right>
 
   101     static const bool value = false;
 
   105   struct CTEqual<val, val> {
 
   106     static const bool value = true;
 
   110   template <int left, int right>
 
   112     static const bool value = left < right;
 
   116   struct CTLess<left, 0> {
 
   117     static const bool value = false;
 
   121   struct CTLess<0, right> {
 
   122     static const bool value = true;
 
   126   struct CTLess<0, 0> {
 
   127     static const bool value = false;
 
   131   struct CTLess<1, 1> {
 
   132     static const bool value = false;
 
   135   template <bool less, int left, int right>
 
   137     static const int value = left;    
 
   140   template <int left, int right>
 
   141   struct CTMaxImpl<true, left, right> {
 
   142     static const int value = right;
 
   145   template <int left, int right>
 
   147     static const int value = 
 
   148     CTMaxImpl<CTLess<left, right>::value, left, right>::value;
 
   152   /// \brief Simple Variant type with two type
 
   154   /// Simple Variant type with two type
 
   155   template <typename _First, typename _Second>
 
   159     typedef _First First;
 
   160     typedef _Second Second;
 
   162     struct WrongStateError : public lemon::LogicError {
 
   164       virtual const char* exceptionName() const {
 
   165         return "lemon::BiVariant::WrongStateError";
 
   171       new(reinterpret_cast<First*>(data)) First();
 
   174     BiVariant(const First& first) {
 
   176       new(reinterpret_cast<First*>(data)) First(first);
 
   179     BiVariant(const Second& second) {
 
   181       new(reinterpret_cast<Second*>(data)) Second(second);
 
   184     BiVariant(const BiVariant& bivariant) {
 
   185       flag = bivariant.flag;
 
   187         new(reinterpret_cast<First*>(data)) First(bivariant.first());      
 
   189         new(reinterpret_cast<Second*>(data)) Second(bivariant.second());      
 
   197     BiVariant& setFirst() {
 
   200       new(reinterpret_cast<First*>(data)) First();   
 
   204     BiVariant& setFirst(const First& first) {
 
   207       new(reinterpret_cast<First*>(data)) First(first);   
 
   211     BiVariant& setSecond() {
 
   214       new(reinterpret_cast<Second*>(data)) Second();   
 
   218     BiVariant& setSecond(const Second& second) {
 
   221       new(reinterpret_cast<Second*>(data)) Second(second);   
 
   225     BiVariant& operator=(const First& first) {
 
   226       return setFirst(first);
 
   229     BiVariant& operator=(const Second& second) {
 
   230       return setSecond(second);
 
   234     BiVariant& operator=(const BiVariant& bivariant) {
 
   235       if (this == &bivariant) return *this;
 
   237       flag = bivariant.flag;
 
   239         new(reinterpret_cast<First*>(data)) First(bivariant.first());      
 
   241         new(reinterpret_cast<Second*>(data)) Second(bivariant.second());      
 
   247       LEMON_ASSERT(flag, WrongStateError());
 
   248       return *reinterpret_cast<First*>(data); 
 
   251     const First& first() const { 
 
   252       LEMON_ASSERT(flag, WrongStateError());
 
   253       return *reinterpret_cast<const First*>(data); 
 
   256     operator First&() { return first(); }
 
   257     operator const First&() const { return first(); }
 
   260       LEMON_ASSERT(!flag, WrongStateError());
 
   261       return *reinterpret_cast<Second*>(data); 
 
   264     const Second& second() const { 
 
   265       LEMON_ASSERT(!flag, WrongStateError());
 
   266       return *reinterpret_cast<const Second*>(data); 
 
   269     operator Second&() { return second(); }
 
   270     operator const Second&() const { return second(); }
 
   272     bool firstState() const { return flag; }
 
   273     bool secondState() const { return !flag; }
 
   279         reinterpret_cast<First*>(data)->~First();
 
   281         reinterpret_cast<Second*>(data)->~Second();
 
   285     char data[CTMax<sizeof(First), sizeof(Second)>::value];
 
   289   template <typename T>
 
   292     Wrap(const T &t) : value(t) {}
 
   295   /**************** dummy class to avoid ambiguity ****************/
 
   297   template<int T> struct dummy { dummy(int) {} };
 
   299   /**************** enable_if from BOOST ****************/
 
   301   template <bool B, class T = void>
 
   307   struct enable_if_c<false, T> {};
 
   309   template <class Cond, class T = void> 
 
   310   struct enable_if : public enable_if_c<Cond::value, T> {};
 
   312   template <bool B, class T>
 
   313   struct lazy_enable_if_c {
 
   314     typedef typename T::type type;
 
   318   struct lazy_enable_if_c<false, T> {};
 
   320   template <class Cond, class T> 
 
   321   struct lazy_enable_if : public lazy_enable_if_c<Cond::value, T> {};
 
   324   template <bool B, class T = void>
 
   325   struct disable_if_c {
 
   330   struct disable_if_c<true, T> {};
 
   332   template <class Cond, class T = void> 
 
   333   struct disable_if : public disable_if_c<Cond::value, T> {};
 
   335   template <bool B, class T>
 
   336   struct lazy_disable_if_c {
 
   337     typedef typename T::type type;
 
   341   struct lazy_disable_if_c<true, T> {};
 
   343   template <class Cond, class T> 
 
   344   struct lazy_disable_if : public lazy_disable_if_c<Cond::value, T> {};