Improve docs.
     2 #ifndef HUGO_DIJKSTRA_H
 
     3 #define HUGO_DIJKSTRA_H
 
     7 ///\brief Dijkstra algorithm.
 
     9 #include <hugo/bin_heap.h>
 
    10 #include <hugo/invalid.h>
 
    14 /// \addtogroup flowalgs
 
    17   ///%Dijkstra algorithm class.
 
    19   ///This class provides an efficient implementation of %Dijkstra algorithm.
 
    20   ///The edge lengths are passed to the algorithm using a
 
    21   ///\ref ReadMapSkeleton "readable map",
 
    22   ///so it is easy to change it to any kind of length.
 
    24   ///The type of the length is determined by the \c ValueType of the length map.
 
    26   ///It is also possible to change the underlying priority heap.
 
    28   ///\param GR The graph type the algorithm runs on.
 
    29   ///\param LM This read-only
 
    32   ///lengths of the edges. It is read once for each edge, so the map
 
    33   ///may involve in relatively time consuming process to compute the edge
 
    34   ///length if it is necessary. The default map type is
 
    35   ///\ref GraphSkeleton::EdgeMap "Graph::EdgeMap<int>"
 
    36   ///\param Heap The heap type used by the %Dijkstra
 
    37   ///algorithm. The default
 
    38   ///is using \ref BinHeap "binary heap".
 
    40   ///\author Jacint Szabo and Alpar Juttner
 
    41   ///\todo We need a typedef-names should be standardized. (-:
 
    42   ///\todo Type of \c PredMap, \c PredNodeMap and \c DistMap
 
    43   ///should not be fixed. (Problematic to solve).
 
    46   template <typename GR,
 
    50   template <typename GR,
 
    51 	    typename LM=typename GR::template EdgeMap<int>,
 
    52 	    template <class,class,class,class> class Heap = BinHeap >
 
    56     ///The type of the underlying graph.
 
    59     typedef typename Graph::Node Node;
 
    61     typedef typename Graph::NodeIt NodeIt;
 
    63     typedef typename Graph::Edge Edge;
 
    65     typedef typename Graph::OutEdgeIt OutEdgeIt;
 
    67     ///The type of the length of the edges.
 
    68     typedef typename LM::ValueType ValueType;
 
    69     ///The type of the map that stores the edge lengths.
 
    71     ///\brief The type of the map that stores the last
 
    72     ///edges of the shortest paths.
 
    73     typedef typename Graph::template NodeMap<Edge> PredMap;
 
    74     ///\brief The type of the map that stores the last but one
 
    75     ///nodes of the shortest paths.
 
    76     typedef typename Graph::template NodeMap<Node> PredNodeMap;
 
    77     ///The type of the map that stores the dists of the nodes.
 
    78     typedef typename Graph::template NodeMap<ValueType> DistMap;
 
    81     /// Pointer to the underlying graph.
 
    83     /// Pointer to the length map
 
    85     ///Pointer to the map of predecessors edges.
 
    87     ///Indicates if \ref predecessor is locally allocated (\c true) or not.
 
    88     bool local_predecessor;
 
    89     ///Pointer to the map of predecessors nodes.
 
    90     PredNodeMap *pred_node;
 
    91     ///Indicates if \ref pred_node is locally allocated (\c true) or not.
 
    93     ///Pointer to the map of distances.
 
    95     ///Indicates if \ref distance is locally allocated (\c true) or not.
 
    98     ///The source node of the last execution.
 
   101     ///Initializes the maps.
 
   103     ///\todo Error if \c G or are \c NULL. What about \c length?
 
   104     ///\todo Better memory allocation (instead of new).
 
   108 	local_predecessor = true;
 
   109 	predecessor = new PredMap(*G);
 
   112 	local_pred_node = true;
 
   113 	pred_node = new PredNodeMap(*G);
 
   116 	local_distance = true;
 
   117 	distance = new DistMap(*G);
 
   124     ///\param _G the graph the algorithm will run on.
 
   125     ///\param _length the length map used by the algorithm.
 
   126     Dijkstra(const Graph& _G, const LM& _length) :
 
   127       G(&_G), length(&_length),
 
   128       predecessor(NULL), local_predecessor(false),
 
   129       pred_node(NULL), local_pred_node(false),
 
   130       distance(NULL), local_distance(false)
 
   136       if(local_predecessor) delete predecessor;
 
   137       if(local_pred_node) delete pred_node;
 
   138       if(local_distance) delete distance;
 
   141     ///Sets the length map.
 
   143     ///Sets the length map.
 
   144     ///\return <tt> (*this) </tt>
 
   145     Dijkstra &setLengthMap(const LM &m) 
 
   151     ///Sets the map storing the predecessor edges.
 
   153     ///Sets the map storing the predecessor edges.
 
   154     ///If you don't use this function before calling \ref run(),
 
   155     ///it will allocate one. The destuctor deallocates this
 
   156     ///automatically allocated map, of course.
 
   157     ///\return <tt> (*this) </tt>
 
   158     Dijkstra &setPredMap(PredMap &m) 
 
   160       if(local_predecessor) {
 
   162 	local_predecessor=false;
 
   168     ///Sets the map storing the predecessor nodes.
 
   170     ///Sets the map storing the predecessor nodes.
 
   171     ///If you don't use this function before calling \ref run(),
 
   172     ///it will allocate one. The destuctor deallocates this
 
   173     ///automatically allocated map, of course.
 
   174     ///\return <tt> (*this) </tt>
 
   175     Dijkstra &setPredNodeMap(PredNodeMap &m) 
 
   177       if(local_pred_node) {
 
   179 	local_pred_node=false;
 
   185     ///Sets the map storing the distances calculated by the algorithm.
 
   187     ///Sets the map storing the distances calculated by the algorithm.
 
   188     ///If you don't use this function before calling \ref run(),
 
   189     ///it will allocate one. The destuctor deallocates this
 
   190     ///automatically allocated map, of course.
 
   191     ///\return <tt> (*this) </tt>
 
   192     Dijkstra &setDistMap(DistMap &m) 
 
   196 	local_distance=false;
 
   202   ///Runs %Dijkstra algorithm from node \c s.
 
   204   ///This method runs the %Dijkstra algorithm from a root node \c s
 
   207   ///shortest path to each node. The algorithm computes
 
   208   ///- The shortest path tree.
 
   209   ///- The distance of each node from the root.
 
   217       for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
 
   218 	predecessor->set(u,INVALID);
 
   219 	pred_node->set(u,INVALID);
 
   222       typename GR::template NodeMap<int> heap_map(*G,-1);
 
   224       typedef Heap<Node, ValueType, typename GR::template NodeMap<int>,
 
   225       std::less<ValueType> > 
 
   228       HeapType heap(heap_map);
 
   232       while ( !heap.empty() ) {
 
   235 	ValueType oldvalue=heap[v];
 
   237 	distance->set(v, oldvalue);
 
   240 	for(OutEdgeIt e(*G,v); e!=INVALID; ++e) {
 
   242 	  switch(heap.state(w)) {
 
   243 	  case HeapType::PRE_HEAP:
 
   244 	    heap.push(w,oldvalue+(*length)[e]); 
 
   245 	    predecessor->set(w,e);
 
   248 	  case HeapType::IN_HEAP:
 
   249 	    if ( oldvalue+(*length)[e] < heap[w] ) {
 
   250 	      heap.decrease(w, oldvalue+(*length)[e]); 
 
   251 	      predecessor->set(w,e);
 
   255 	  case HeapType::POST_HEAP:
 
   262     ///The distance of a node from the root.
 
   264     ///Returns the distance of a node from the root.
 
   265     ///\pre \ref run() must be called before using this function.
 
   266     ///\warning If node \c v in unreachable from the root the return value
 
   267     ///of this funcion is undefined.
 
   268     ValueType dist(Node v) const { return (*distance)[v]; }
 
   270     ///Returns the 'previous edge' of the shortest path tree.
 
   272     ///For a node \c v it returns the 'previous edge' of the shortest path tree,
 
   273     ///i.e. it returns the last edge of a shortest path from the root to \c
 
   274     ///v. It is \ref INVALID
 
   275     ///if \c v is unreachable from the root or if \c v=s. The
 
   276     ///shortest path tree used here is equal to the shortest path tree used in
 
   277     ///\ref predNode(Node v).  \pre \ref run() must be called before using
 
   279     ///\todo predEdge could be a better name.
 
   280     Edge pred(Node v) const { return (*predecessor)[v]; }
 
   282     ///Returns the 'previous node' of the shortest path tree.
 
   284     ///For a node \c v it returns the 'previous node' of the shortest path tree,
 
   285     ///i.e. it returns the last but one node from a shortest path from the
 
   286     ///root to \c /v. It is INVALID if \c v is unreachable from the root or if
 
   287     ///\c v=s. The shortest path tree used here is equal to the shortest path
 
   288     ///tree used in \ref pred(Node v).  \pre \ref run() must be called before
 
   289     ///using this function.
 
   290     Node predNode(Node v) const { return (*pred_node)[v]; }
 
   292     ///Returns a reference to the NodeMap of distances.
 
   294     ///Returns a reference to the NodeMap of distances. \pre \ref run() must
 
   295     ///be called before using this function.
 
   296     const DistMap &distMap() const { return *distance;}
 
   298     ///Returns a reference to the shortest path tree map.
 
   300     ///Returns a reference to the NodeMap of the edges of the
 
   301     ///shortest path tree.
 
   302     ///\pre \ref run() must be called before using this function.
 
   303     const PredMap &predMap() const { return *predecessor;}
 
   305     ///Returns a reference to the map of nodes of shortest paths.
 
   307     ///Returns a reference to the NodeMap of the last but one nodes of the
 
   308     ///shortest path tree.
 
   309     ///\pre \ref run() must be called before using this function.
 
   310     const PredNodeMap &predNodeMap() const { return *pred_node;}
 
   312     ///Checks if a node is reachable from the root.
 
   314     ///Returns \c true if \c v is reachable from the root.
 
   315     ///\note The root node is reported to be reached!
 
   316     ///\pre \ref run() must be called before using this function.
 
   318     bool reached(Node v) { return v==source || (*predecessor)[v]!=INVALID; }
 
   324 } //END OF NAMESPACE HUGO