Improve docs.
     2 #ifndef HUGO_MAX_FLOW_H
 
     3 #define HUGO_MAX_FLOW_H
 
     8 //#include <hugo/graph_wrapper.h>
 
     9 #include <hugo/invalid.h>
 
    10 #include <hugo/maps.h>
 
    17   /// \addtogroup flowalgs
 
    20   ///Maximum flow algorithms class.
 
    22   ///This class provides various algorithms for finding a flow of
 
    23   ///maximum value in a directed graph. The \e source node, the \e
 
    24   ///target node, the \e capacity of the edges and the \e starting \e
 
    25   ///flow value of the edges should be passed to the algorithm through the
 
    26   ///constructor. It is possible to change these quantities using the
 
    27   ///functions \ref setSource, \ref setTarget, \ref setCap and
 
    28   ///\ref setFlow. Before any subsequent runs of any algorithm of
 
    29   ///the class \ref setFlow should be called. 
 
    31   ///After running an algorithm of the class, the actual flow value 
 
    32   ///can be obtained by calling \ref flowValue(). The minimum
 
    33   ///value cut can be written into a \c node map of \c bools by
 
    34   ///calling \ref minCut. (\ref minMinCut and \ref maxMinCut writes
 
    35   ///the inclusionwise minimum and maximum of the minimum value
 
    38   ///\param Graph The directed graph type the algorithm runs on.
 
    39   ///\param Num The number type of the capacities and the flow values.
 
    40   ///\param CapMap The capacity map type.
 
    41   ///\param FlowMap The flow map type.
 
    43   ///\author Marton Makai, Jacint Szabo 
 
    44   template <typename Graph, typename Num,
 
    45 	    typename CapMap=typename Graph::template EdgeMap<Num>,
 
    46             typename FlowMap=typename Graph::template EdgeMap<Num> >
 
    49     typedef typename Graph::Node Node;
 
    50     typedef typename Graph::NodeIt NodeIt;
 
    51     typedef typename Graph::EdgeIt EdgeIt;
 
    52     typedef typename Graph::OutEdgeIt OutEdgeIt;
 
    53     typedef typename Graph::InEdgeIt InEdgeIt;
 
    55     typedef typename std::vector<Node> VecFirst;
 
    56     typedef typename Graph::template NodeMap<Node> NNMap;
 
    57     typedef typename std::vector<Node> VecNode;
 
    62     const CapMap* capacity;
 
    64     int n;      //the number of nodes of G
 
    65     //    typedef ResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;   
 
    66     //typedef ExpResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;
 
    67     //    typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt;
 
    68     //    typedef typename ResGW::Edge ResGWEdge;
 
    69     typedef typename Graph::template NodeMap<int> ReachedMap;
 
    72     //level works as a bool map in augmenting path algorithms and is
 
    73     //used by bfs for storing reached information.  In preflow, it
 
    74     //shows the levels of nodes.     
 
    77     //excess is needed only in preflow
 
    78     typename Graph::template NodeMap<Num> excess;
 
    80     // constants used for heuristics
 
    81     static const int H0=20;
 
    82     static const int H1=1;
 
    86     ///Indicates the property of the starting flow.
 
    88     ///Indicates the property of the starting flow. The meanings are as follows:
 
    89     ///- \c ZERO_FLOW: constant zero flow
 
    90     ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to
 
    91     ///the sum of the out-flows in every node except the \e source and
 
    93     ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at 
 
    94     ///least the sum of the out-flows in every node except the \e source.
 
    95     ///- \c NO_FLOW: indicates an unspecified edge map. \ref flow will be 
 
    96     ///set to the constant zero flow in the beginning of the algorithm in this case.
 
   107       AFTER_FAST_AUGMENTING, 
 
   108       AFTER_PRE_FLOW_PHASE_1,      
 
   109       AFTER_PRE_FLOW_PHASE_2
 
   112     /// Do not needle this flag only if necessary.
 
   115     //     int number_of_augmentations;
 
   118     //     template<typename IntMap>
 
   119     //     class TrickyReachedMap {
 
   122     //       int* number_of_augmentations;
 
   124     //       TrickyReachedMap(IntMap& _map, int& _number_of_augmentations) : 
 
   125     // 	map(&_map), number_of_augmentations(&_number_of_augmentations) { }
 
   126     //       void set(const Node& n, bool b) {
 
   128     // 	  map->set(n, *number_of_augmentations);
 
   130     // 	  map->set(n, *number_of_augmentations-1);
 
   132     //       bool operator[](const Node& n) const { 
 
   133     // 	return (*map)[n]==*number_of_augmentations; 
 
   139     ///\todo Document, please.
 
   141     MaxFlow(const Graph& _G, Node _s, Node _t,
 
   142 	    const CapMap& _capacity, FlowMap& _flow) :
 
   143       g(&_G), s(_s), t(_t), capacity(&_capacity),
 
   144       flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0), 
 
   145       status(AFTER_NOTHING) { }
 
   147     ///Runs a maximum flow algorithm.
 
   149     ///Runs a preflow algorithm, which is the fastest maximum flow
 
   150     ///algorithm up-to-date. The default for \c fe is ZERO_FLOW.
 
   151     ///\pre The starting flow must be
 
   152     /// - a constant zero flow if \c fe is \c ZERO_FLOW,
 
   153     /// - an arbitary flow if \c fe is \c GEN_FLOW,
 
   154     /// - an arbitary preflow if \c fe is \c PRE_FLOW,
 
   155     /// - any map if \c fe is NO_FLOW.
 
   156     void run(FlowEnum fe=ZERO_FLOW) {
 
   161     ///Runs a preflow algorithm.  
 
   163     ///Runs a preflow algorithm. The preflow algorithms provide the
 
   164     ///fastest way to compute a maximum flow in a directed graph.
 
   165     ///\pre The starting flow must be
 
   166     /// - a constant zero flow if \c fe is \c ZERO_FLOW,
 
   167     /// - an arbitary flow if \c fe is \c GEN_FLOW,
 
   168     /// - an arbitary preflow if \c fe is \c PRE_FLOW,
 
   169     /// - any map if \c fe is NO_FLOW.
 
   171     ///\todo NO_FLOW should be the default flow.
 
   172     void preflow(FlowEnum fe) {
 
   179     //   list 'level_list' on the nodes on level i implemented by hand
 
   180     //   stack 'active' on the active nodes on level i                                                                                    
 
   181     //   runs heuristic 'highest label' for H1*n relabels
 
   182     //   runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label'
 
   183     //   Parameters H0 and H1 are initialized to 20 and 1.
 
   185     ///Runs the first phase of the preflow algorithm.
 
   187     ///The preflow algorithm consists of two phases, this method runs the
 
   188     ///first phase. After the first phase the maximum flow value and a
 
   189     ///minimum value cut can already be computed, though a maximum flow
 
   190     ///is not yet obtained. So after calling this method \ref flowValue
 
   191     ///and \ref actMinCut gives proper results.
 
   192     ///\warning: \ref minCut, \ref minMinCut and \ref maxMinCut do not
 
   193     ///give minimum value cuts unless calling \ref preflowPhase2.
 
   194     ///\pre The starting flow must be
 
   195     /// - a constant zero flow if \c fe is \c ZERO_FLOW,
 
   196     /// - an arbitary flow if \c fe is \c GEN_FLOW,
 
   197     /// - an arbitary preflow if \c fe is \c PRE_FLOW,
 
   198     /// - any map if \c fe is NO_FLOW.
 
   199     void preflowPhase1(FlowEnum fe)
 
   202       int heur0=(int)(H0*n);  //time while running 'bound decrease'
 
   203       int heur1=(int)(H1*n);  //time while running 'highest label'
 
   204       int heur=heur1;         //starting time interval (#of relabels)
 
   208       //It is 0 in case 'bound decrease' and 1 in case 'highest label'
 
   211       //Needed for 'bound decrease', true means no active nodes are above bound
 
   214       int k=n-2;  //bound on the highest level under n containing a node
 
   215       int b=k;    //bound on the highest level under n of an active node
 
   217       VecFirst first(n, INVALID);
 
   218       NNMap next(*g, INVALID); //maybe INVALID is not needed
 
   220       NNMap left(*g, INVALID);
 
   221       NNMap right(*g, INVALID);
 
   222       VecNode level_list(n,INVALID);
 
   223       //List of the nodes in level i<n, set to n.
 
   225       preflowPreproc(fe, next, first, level_list, left, right);
 
   226       //End of preprocessing
 
   228       //Push/relabel on the highest level active nodes.
 
   231 	  if ( !what_heur && !end && k > 0 ) {
 
   237 	if ( first[b]==INVALID ) --b;
 
   242 	  int newlevel=push(w, next, first);
 
   243 	  if ( excess[w] > 0 ) relabel(w, newlevel, next, first, level_list,
 
   244 				       left, right, b, k, what_heur);
 
   247 	  if ( numrelabel >= heur ) {
 
   262       status=AFTER_PRE_FLOW_PHASE_1;
 
   266     ///Runs the second phase of the preflow algorithm.
 
   268     ///The preflow algorithm consists of two phases, this method runs
 
   269     ///the second phase. After calling \ref preflowPhase1 and then
 
   270     ///\ref preflowPhase2 the methods \ref flowValue, \ref minCut,
 
   271     ///\ref minMinCut and \ref maxMinCut give proper results.
 
   272     ///\pre \ref preflowPhase1 must be called before.
 
   276       int k=n-2;  //bound on the highest level under n containing a node
 
   277       int b=k;    //bound on the highest level under n of an active node
 
   280       VecFirst first(n, INVALID);
 
   281       NNMap next(*g, INVALID); //maybe INVALID is not needed
 
   283       std::queue<Node> bfs_queue;
 
   286       while (!bfs_queue.empty()) {
 
   288 	Node v=bfs_queue.front();
 
   292 	for(InEdgeIt e(*g,v); e!=INVALID; ++e) {
 
   293 	  if ( (*capacity)[e] <= (*flow)[e] ) continue;
 
   295 	  if ( level[u] >= n ) {
 
   298 	    if ( excess[u] > 0 ) {
 
   299 	      next.set(u,first[l]);
 
   305 	for(OutEdgeIt e(*g,v); e!=INVALID; ++e) {
 
   306 	  if ( 0 >= (*flow)[e] ) continue;
 
   308 	  if ( level[u] >= n ) {
 
   311 	    if ( excess[u] > 0 ) {
 
   312 	      next.set(u,first[l]);
 
   324 	if ( first[b]==INVALID ) --b;
 
   329 	  int newlevel=push(w,next, first/*active*/);
 
   332 	  if ( excess[w] > 0 ) {
 
   333 	    level.set(w,++newlevel);
 
   334 	    next.set(w,first[newlevel]);
 
   341       status=AFTER_PRE_FLOW_PHASE_2;
 
   345     /// Returns the value of the maximum flow.
 
   347     /// Returns the excess of the target node \ref t. 
 
   348     /// After running \ref preflowPhase1, this is the value of 
 
   349     /// the maximum flow.
 
   350     /// It can be called already after running \ref preflowPhase1.
 
   351     Num flowValue() const {
 
   353       //       for(InEdgeIt e(*g,t);g->valid(e);g->next(e)) a+=(*flow)[e];
 
   354       //       for(OutEdgeIt e(*g,t);g->valid(e);g->next(e)) a-=(*flow)[e];
 
   357       //marci figyu: excess[t] epp ezt adja preflow 1. fazisa utan   
 
   361     ///Returns a minimum value cut after calling \ref preflowPhase1.
 
   363     ///After the first phase of the preflow algorithm the maximum flow
 
   364     ///value and a minimum value cut can already be computed. This
 
   365     ///method can be called after running \ref preflowPhase1 for
 
   366     ///obtaining a minimum value cut.
 
   367     /// \warning Gives proper result only right after calling \ref
 
   369     /// \todo We have to make some status variable which shows the
 
   371     /// of the class. This enables us to determine which methods are valid
 
   372     /// for MinCut computation
 
   373     template<typename _CutMap>
 
   374     void actMinCut(_CutMap& M) const {
 
   376 	case AFTER_PRE_FLOW_PHASE_1:
 
   377 	for(NodeIt v(*g); v!=INVALID; ++v) {
 
   385 	case AFTER_PRE_FLOW_PHASE_2:
 
   387 	case AFTER_AUGMENTING:
 
   388 	case AFTER_FAST_AUGMENTING:
 
   394     ///Returns the inclusionwise minimum of the minimum value cuts.
 
   396     ///Sets \c M to the characteristic vector of the minimum value cut
 
   397     ///which is inclusionwise minimum. It is computed by processing
 
   398     ///a bfs from the source node \c s in the residual graph.
 
   399     ///\pre M should be a node map of bools initialized to false.
 
   400     ///\pre \c flow must be a maximum flow.
 
   401     template<typename _CutMap>
 
   402     void minMinCut(_CutMap& M) const {
 
   403       std::queue<Node> queue;
 
   408       while (!queue.empty()) {
 
   409         Node w=queue.front();
 
   412 	for(OutEdgeIt e(*g,w) ; e!=INVALID; ++e) {
 
   414 	  if (!M[v] && (*flow)[e] < (*capacity)[e] ) {
 
   420 	for(InEdgeIt e(*g,w) ; e!=INVALID; ++e) {
 
   422 	  if (!M[v] && (*flow)[e] > 0 ) {
 
   430     ///Returns the inclusionwise maximum of the minimum value cuts.
 
   432     ///Sets \c M to the characteristic vector of the minimum value cut
 
   433     ///which is inclusionwise maximum. It is computed by processing a
 
   434     ///backward bfs from the target node \c t in the residual graph.
 
   435     ///\pre M should be a node map of bools initialized to false.
 
   436     ///\pre \c flow must be a maximum flow. 
 
   437     template<typename _CutMap>
 
   438     void maxMinCut(_CutMap& M) const {
 
   440       for(NodeIt v(*g) ; v!=INVALID; ++v) M.set(v, true);
 
   442       std::queue<Node> queue;
 
   447       while (!queue.empty()) {
 
   448         Node w=queue.front();
 
   451 	for(InEdgeIt e(*g,w) ; e!=INVALID; ++e) {
 
   453 	  if (M[v] && (*flow)[e] < (*capacity)[e] ) {
 
   459 	for(OutEdgeIt e(*g,w) ; e!=INVALID; ++e) {
 
   461 	  if (M[v] && (*flow)[e] > 0 ) {
 
   469     ///Returns a minimum value cut.
 
   471     ///Sets \c M to the characteristic vector of a minimum value cut.
 
   472     ///\pre M should be a node map of bools initialized to false.
 
   473     ///\pre \c flow must be a maximum flow.    
 
   474     template<typename CutMap>
 
   475     void minCut(CutMap& M) const { minMinCut(M); }
 
   477     ///Sets the source node to \c _s.
 
   479     ///Sets the source node to \c _s.
 
   481     void setSource(Node _s) { s=_s; status=AFTER_NOTHING; }
 
   483     ///Sets the target node to \c _t.
 
   485     ///Sets the target node to \c _t.
 
   487     void setTarget(Node _t) { t=_t; status=AFTER_NOTHING; }
 
   489     /// Sets the edge map of the capacities to _cap.
 
   491     /// Sets the edge map of the capacities to _cap.
 
   493     void setCap(const CapMap& _cap)
 
   494     { capacity=&_cap; status=AFTER_NOTHING; }
 
   496     /// Sets the edge map of the flows to _flow.
 
   498     /// Sets the edge map of the flows to _flow.
 
   500     void setFlow(FlowMap& _flow) { flow=&_flow; status=AFTER_NOTHING; }
 
   505     int push(Node w, NNMap& next, VecFirst& first) {
 
   509       int newlevel=n;       //bound on the next level of w
 
   511       for(OutEdgeIt e(*g,w) ; e!=INVALID; ++e) {
 
   512 	if ( (*flow)[e] >= (*capacity)[e] ) continue;
 
   515 	if( lev > level[v] ) { //Push is allowed now
 
   517 	  if ( excess[v]<=0 && v!=t && v!=s ) {
 
   518 	    next.set(v,first[level[v]]);
 
   522 	  Num cap=(*capacity)[e];
 
   526 	  if ( remcap >= exc ) { //A nonsaturating push.
 
   528 	    flow->set(e, flo+exc);
 
   529 	    excess.set(v, excess[v]+exc);
 
   533 	  } else { //A saturating push.
 
   535 	    excess.set(v, excess[v]+remcap);
 
   538 	} else if ( newlevel > level[v] ) newlevel = level[v];
 
   542 	for(InEdgeIt e(*g,w) ; e!=INVALID; ++e) {
 
   544 	  if( (*flow)[e] <= 0 ) continue;
 
   547 	  if( lev > level[v] ) { //Push is allowed now
 
   549 	    if ( excess[v]<=0 && v!=t && v!=s ) {
 
   550 	      next.set(v,first[level[v]]);
 
   556 	    if ( flo >= exc ) { //A nonsaturating push.
 
   558 	      flow->set(e, flo-exc);
 
   559 	      excess.set(v, excess[v]+exc);
 
   562 	    } else {  //A saturating push.
 
   564 	      excess.set(v, excess[v]+flo);
 
   568 	  } else if ( newlevel > level[v] ) newlevel = level[v];
 
   571       } // if w still has excess after the out edge for cycle
 
   580     void preflowPreproc(FlowEnum fe, NNMap& next, VecFirst& first,
 
   581 			VecNode& level_list, NNMap& left, NNMap& right)
 
   583       switch (fe) {  //setting excess
 
   585 	for(EdgeIt e(*g); e!=INVALID; ++e) flow->set(e,0);
 
   586 	for(NodeIt v(*g); v!=INVALID; ++v) excess.set(v,0);
 
   589 	for(NodeIt v(*g); v!=INVALID; ++v) excess.set(v,0);
 
   592 	for(NodeIt v(*g); v!=INVALID; ++v) excess.set(v,0);
 
   595 	  for(InEdgeIt e(*g,t) ; e!=INVALID; ++e) exc+=(*flow)[e];
 
   596 	  for(OutEdgeIt e(*g,t) ; e!=INVALID; ++e) exc-=(*flow)[e];
 
   604       for(NodeIt v(*g); v!=INVALID; ++v) level.set(v,n);
 
   605       //setting each node to level n
 
   607       std::queue<Node> bfs_queue;
 
   611       case NO_FLOW:   //flow is already set to const zero
 
   613 	//Reverse_bfs from t, to find the starting level.
 
   617 	while (!bfs_queue.empty()) {
 
   619 	  Node v=bfs_queue.front();
 
   623 	  for(InEdgeIt e(*g,v) ; e!=INVALID; ++e) {
 
   625 	    if ( level[w] == n && w != s ) {
 
   627 	      Node z=level_list[l];
 
   628 	      if ( z!=INVALID ) left.set(z,w);
 
   637 	for(OutEdgeIt e(*g,s) ; e!=INVALID; ++e)
 
   639 	    Num c=(*capacity)[e];
 
   640 	    if ( c <= 0 ) continue;
 
   642 	    if ( level[w] < n ) {
 
   643 	      if ( excess[w] <= 0 && w!=t ) //putting into the stack
 
   645 		  next.set(w,first[level[w]]);
 
   649 	      excess.set(w, excess[w]+c);
 
   654 	//Reverse_bfs from t in the residual graph,
 
   655 	//to find the starting level.
 
   659 	while (!bfs_queue.empty()) {
 
   661 	  Node v=bfs_queue.front();
 
   665 	  for(InEdgeIt e(*g,v) ; e!=INVALID; ++e) {
 
   666 	    if ( (*capacity)[e] <= (*flow)[e] ) continue;
 
   668 	    if ( level[w] == n && w != s ) {
 
   670 	      Node z=level_list[l];
 
   671 	      if ( z!=INVALID ) left.set(z,w);
 
   678 	  for(OutEdgeIt e(*g,v) ; e!=INVALID; ++e) {
 
   679 	    if ( 0 >= (*flow)[e] ) continue;
 
   681 	    if ( level[w] == n && w != s ) {
 
   683 	      Node z=level_list[l];
 
   684 	      if ( z!=INVALID ) left.set(z,w);
 
   693 	for(OutEdgeIt e(*g,s); e!=INVALID; ++e)
 
   695 	    Num rem=(*capacity)[e]-(*flow)[e];
 
   696 	    if ( rem <= 0 ) continue;
 
   698 	    if ( level[w] < n ) {
 
   699 	      if ( excess[w] <= 0 && w!=t ) //putting into the stack
 
   701 		  next.set(w,first[level[w]]);
 
   704 	      flow->set(e, (*capacity)[e]);
 
   705 	      excess.set(w, excess[w]+rem);
 
   709 	for(InEdgeIt e(*g,s); e!=INVALID; ++e)
 
   711 	    if ( (*flow)[e] <= 0 ) continue;
 
   713 	    if ( level[w] < n ) {
 
   714 	      if ( excess[w] <= 0 && w!=t )
 
   716 		  next.set(w,first[level[w]]);
 
   719 	      excess.set(w, excess[w]+(*flow)[e]);
 
   725 	//Reverse_bfs from t in the residual graph,
 
   726 	//to find the starting level.
 
   730 	while (!bfs_queue.empty()) {
 
   732 	  Node v=bfs_queue.front();
 
   736 	  for(InEdgeIt e(*g,v) ; e!=INVALID; ++e) {
 
   737 	    if ( (*capacity)[e] <= (*flow)[e] ) continue;
 
   739 	    if ( level[w] == n && w != s ) {
 
   741 	      Node z=level_list[l];
 
   742 	      if ( z!=INVALID ) left.set(z,w);
 
   749 	  for(OutEdgeIt e(*g,v) ; e!=INVALID; ++e) {
 
   750 	    if ( 0 >= (*flow)[e] ) continue;
 
   752 	    if ( level[w] == n && w != s ) {
 
   754 	      Node z=level_list[l];
 
   755 	      if ( z!=INVALID ) left.set(z,w);
 
   765 	for(OutEdgeIt e(*g,s) ; e!=INVALID; ++e) {
 
   766 	  Num rem=(*capacity)[e]-(*flow)[e];
 
   767 	  if ( rem <= 0 ) continue;
 
   769 	  if ( level[w] < n ) {
 
   770 	    flow->set(e, (*capacity)[e]);
 
   771 	    excess.set(w, excess[w]+rem);
 
   775 	for(InEdgeIt e(*g,s) ; e!=INVALID; ++e) {
 
   776 	  if ( (*flow)[e] <= 0 ) continue;
 
   778 	  if ( level[w] < n ) {
 
   779 	    excess.set(w, excess[w]+(*flow)[e]);
 
   784 	//computing the excess
 
   785 	for(NodeIt w(*g); w!=INVALID; ++w) {
 
   788 	  for(InEdgeIt e(*g,w) ; e!=INVALID; ++e) exc+=(*flow)[e];
 
   789 	  for(OutEdgeIt e(*g,w) ; e!=INVALID; ++e) exc-=(*flow)[e];
 
   793 	  //putting the active nodes into the stack
 
   795 	    if ( exc > 0 && lev < n && Node(w) != t ) 
 
   796 	      ///\bug	    if ( exc > 0 && lev < n && w != t ) temporarily for working with wrappers. 
 
   798 	      next.set(w,first[lev]);
 
   807     void relabel(Node w, int newlevel, NNMap& next, VecFirst& first,
 
   808 		 VecNode& level_list, NNMap& left,
 
   809 		 NNMap& right, int& b, int& k, bool what_heur )
 
   814       Node right_n=right[w];
 
   818       if ( right_n!=INVALID ) {
 
   819 	if ( left_n!=INVALID ) {
 
   820 	  right.set(left_n, right_n);
 
   821 	  left.set(right_n, left_n);
 
   823 	  level_list[lev]=right_n;
 
   824 	  left.set(right_n, INVALID);
 
   827 	if ( left_n!=INVALID ) {
 
   828 	  right.set(left_n, INVALID);
 
   830 	  level_list[lev]=INVALID;
 
   835       if ( level_list[lev]==INVALID ) {
 
   838 	for (int i=lev; i!=k ; ) {
 
   839 	  Node v=level_list[++i];
 
   840 	  while ( v!=INVALID ) {
 
   844 	  level_list[i]=INVALID;
 
   845 	  if ( !what_heur ) first[i]=INVALID;
 
   855 	if ( newlevel == n ) level.set(w,n);
 
   857 	  level.set(w,++newlevel);
 
   858 	  next.set(w,first[newlevel]);
 
   860 	  if ( what_heur ) b=newlevel;
 
   861 	  if ( k < newlevel ) ++k;      //now k=newlevel
 
   862 	  Node z=level_list[newlevel];
 
   863 	  if ( z!=INVALID ) left.set(z,w);
 
   866 	  level_list[newlevel]=w;
 
   871     void printexcess() {////
 
   872       std::cout << "Excesses:" <<std::endl;
 
   874       for(NodeIt v(*g); v!=INVALID ; ++v) {
 
   875 	std::cout << 1+(g->id(v)) << ":" << excess[v]<<std::endl; 
 
   879     void printlevel() {////
 
   880       std::cout << "Levels:" <<std::endl;
 
   882       for(NodeIt v(*g); v!=INVALID ; ++v) {
 
   883 	std::cout << 1+(g->id(v)) << ":" << level[v]<<std::endl; 
 
   887     void printactive() {////
 
   888       std::cout << "Levels:" <<std::endl;
 
   890       for(NodeIt v(*g); v!=INVALID ; ++v) {
 
   891 	std::cout << 1+(g->id(v)) << ":" << level[v]<<std::endl; 
 
   899 #endif //HUGO_MAX_FLOW_H