Improve docs.
     2 #ifndef HUGO_MINCOSTFLOWS_H
 
     3 #define HUGO_MINCOSTFLOWS_H
 
     7 ///\brief An algorithm for finding a flow of value \c k (for small values of \c k) having minimal total cost 
 
    10 #include <hugo/dijkstra.h>
 
    11 #include <hugo/graph_wrapper.h>
 
    12 #include <hugo/maps.h>
 
    17 /// \addtogroup flowalgs
 
    20   ///\brief Implementation of an algorithm for finding a flow of value \c k 
 
    21   ///(for small values of \c k) having minimal total cost between 2 nodes 
 
    24   /// The class \ref hugo::MinCostFlows "MinCostFlows" implements
 
    25   /// an algorithm for finding a flow of value \c k 
 
    26   ///(for small values of \c k) having minimal total cost  
 
    27   /// from a given source node to a given target node in an
 
    28   /// edge-weighted directed graph having nonnegative integer capacities.
 
    29   /// The range of the length (weight) function is nonnegative reals but 
 
    30   /// the range of capacity function is the set of nonnegative integers. 
 
    31   /// It is not a polinomial time algorithm for counting the minimum cost
 
    32   /// maximal flow, since it counts the minimum cost flow for every value 0..M
 
    33   /// where \c M is the value of the maximal flow.
 
    35   ///\author Attila Bernath
 
    36   template <typename Graph, typename LengthMap, typename CapacityMap>
 
    39     typedef typename LengthMap::ValueType Length;
 
    41     //Warning: this should be integer type
 
    42     typedef typename CapacityMap::ValueType Capacity;
 
    44     typedef typename Graph::Node Node;
 
    45     typedef typename Graph::NodeIt NodeIt;
 
    46     typedef typename Graph::Edge Edge;
 
    47     typedef typename Graph::OutEdgeIt OutEdgeIt;
 
    48     typedef typename Graph::template EdgeMap<int> EdgeIntMap;
 
    50     //    typedef ConstMap<Edge,int> ConstMap;
 
    52     typedef ResGraphWrapper<const Graph,int,CapacityMap,EdgeIntMap> ResGraphType;
 
    53     typedef typename ResGraphType::Edge ResGraphEdge;
 
    56       //typedef typename ResGraphType::template NodeMap<Length> NodeMap;
 
    57       typedef typename Graph::template NodeMap<Length> NodeMap;
 
    58       const ResGraphType& G;
 
    59       //      const EdgeIntMap& rev;
 
    63       typedef typename LengthMap::KeyType KeyType;
 
    64       typedef typename LengthMap::ValueType ValueType;
 
    66       ValueType operator[](typename ResGraphType::Edge e) const {     
 
    68 	  return  ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);   
 
    70 	  return -ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);   
 
    73       ModLengthMap(const ResGraphType& _G,
 
    74 		   const LengthMap &o,  const NodeMap &p) : 
 
    75 	G(_G), /*rev(_rev),*/ ol(o), pot(p){}; 
 
    83     const LengthMap& length;
 
    84     const CapacityMap& capacity;
 
    91     //To store the potential (dual variables)
 
    92     typedef typename Graph::template NodeMap<Length> PotentialMap;
 
    93     PotentialMap potential;
 
   102     MinCostFlows(Graph& _G, LengthMap& _length, CapacityMap& _cap) : G(_G), 
 
   103       length(_length), capacity(_cap), flow(_G), potential(_G){ }
 
   106     ///Runs the algorithm.
 
   108     ///Runs the algorithm.
 
   109     ///Returns k if there are at least k edge-disjoint paths from s to t.
 
   110     ///Otherwise it returns the number of found edge-disjoint paths from s to t.
 
   111     ///\todo May be it does make sense to be able to start with a nonzero 
 
   112     /// feasible primal-dual solution pair as well.
 
   113     int run(Node s, Node t, int k) {
 
   115       //Resetting variables from previous runs
 
   118       for (typename Graph::EdgeIt e(G); e!=INVALID; ++e) flow.set(e, 0);
 
   120       //Initialize the potential to zero
 
   121       for (typename Graph::NodeIt n(G); n!=INVALID; ++n) potential.set(n, 0);
 
   124       //We need a residual graph
 
   125       ResGraphType res_graph(G, capacity, flow);
 
   128       ModLengthMap mod_length(res_graph, length, potential);
 
   130       Dijkstra<ResGraphType, ModLengthMap> dijkstra(res_graph, mod_length);
 
   135 	if (!dijkstra.reached(t)){
 
   136 	  //There are no k paths from s to t
 
   140 	//We have to change the potential
 
   141         for(typename ResGraphType::NodeIt n(res_graph); n!=INVALID; ++n)
 
   142 	  potential[n] += dijkstra.distMap()[n];
 
   145 	//Augmenting on the sortest path
 
   149 	  e = dijkstra.pred(n);
 
   150 	  n = dijkstra.predNode(n);
 
   151 	  res_graph.augment(e,1);
 
   152 	  //Let's update the total length
 
   153 	  if (res_graph.forward(e))
 
   154 	    total_length += length[e];
 
   156 	    total_length -= length[e];	    
 
   169     ///This function gives back the total length of the found paths.
 
   170     ///Assumes that \c run() has been run and nothing changed since then.
 
   171     Length totalLength(){
 
   175     ///Returns a const reference to the EdgeMap \c flow. \pre \ref run() must
 
   176     ///be called before using this function.
 
   177     const EdgeIntMap &getFlow() const { return flow;}
 
   179   ///Returns a const reference to the NodeMap \c potential (the dual solution).
 
   180     /// \pre \ref run() must be called before using this function.
 
   181     const PotentialMap &getPotential() const { return potential;}
 
   183     ///This function checks, whether the given solution is optimal
 
   184     ///Running after a \c run() should return with true
 
   185     ///In this "state of the art" this only check optimality, doesn't bother with feasibility
 
   187     ///\todo Is this OK here?
 
   188     bool checkComplementarySlackness(){
 
   191         for(typename Graph::EdgeIt e(G); e!=INVALID; ++e) {
 
   193 	mod_pot = length[e]-potential[G.head(e)]+potential[G.tail(e)];
 
   195 	//	std::cout << fl_e << std::endl;
 
   196 	if (0<fl_e && fl_e<capacity[e]){
 
   201 	  if (mod_pot > 0 && fl_e != 0)
 
   203 	  if (mod_pot < 0 && fl_e != capacity[e])
 
   211   }; //class MinCostFlows
 
   217 #endif //HUGO_MINCOSTFLOWS_H