Many of ckeckCompileXYZ()'s are now in the corresponding skeleton headers.
(Tests for Symmetric Graphs are still to be moved)
     2 #ifndef LEMON_NET_GRAPH_H
 
     3 #define LEMON_NET_GRAPH_H
 
     6 ///\brief Declaration of EdgePathGraph.
 
     8 #include <lemon/invalid.h>
 
     9 #include <lemon/maps.h>
 
    11 /// The namespace of LEMON
 
    14   // @defgroup empty_graph The EdgePathGraph class
 
    17   /// A graph class in that a simple edge can represent a path.
 
    19   /// This class provides all the common features of a graph structure
 
    20   /// that represents a network. You can handle with it layers. This
 
    21   /// means that an edge in one layer can be a complete path in a nother
 
    24   template <typename P, class Gact, class Gsub>
 
    34     /// The layer on which the edges in this layer can represent paths.
 
    38     /// Map of nodes that represent the nodes of this layer in the sublayer
 
    39     typename Gact::template NodeMap<typename Gsub::Node *> projection;
 
    42     /// Map of routes that are represented by some edges in this layer
 
    43     typename Gact::template EdgeMap<P *> edgepath;
 
    46     /// Defalult constructor.
 
    47     /// We don't need any extra lines, because the actuallayer
 
    48     /// variable has run its constructor, when we have created this class
 
    49     /// So only the two maps has to be initialised here.
 
    50     EdgePathGraph() : projection(actuallayer), edgepath(actuallayer)
 
    56     EdgePathGraph(const EdgePathGraph<P, Gact, Gsub> & EPG ) : actuallayer(EPG.actuallayer) , edgepath(actuallayer), projection(actuallayer)
 
    63     /// This function gets two edgemaps. One belongs to the actual layer and the
 
    64     /// other belongs to the sublayer.
 
    65     /// The function iterates through all of the edges in the edgemap belonging to the actual layer.
 
    66     /// It gets the value that belongs to the actual edge, and adds it to the value of each edge in the
 
    67     /// path represented by itself in the edgemap that belongs to the sublayer.
 
    69     template <typename T1, typename T2> void addMap (typename Gact::EdgeMap<T1> & actmap, typename Gsub::EdgeMap<T2> & submap)
 
    71       for(EdgeIt e(actuallayer);actuallayer.valid(e);actuallayer.next(e))
 
    73 	typedef typename P::EdgeIt PEdgeIt;
 
    76 	//dep//cout << "Edge " << id(tail(e)) << " - " << id(head(e)) << " in actual layer is";
 
    78 	//cout << incr << endl;
 
    82 	  //dep//cout << endl << "Path";
 
    83 	  for(edgepath[e]->first(f); edgepath[e]->valid(f); edgepath[e]->next(f))
 
    85 	    //dep//cout << " " << sublayer->id(sublayer->tail(f)) << "-" << sublayer->id(sublayer->head(f));
 
    88 	  //dep////cout << EPGr2.id(EPGr2.head(f)) << endl;
 
    93 	  //dep//cout << " itself." <<endl;
 
   101     /// This function walks thorugh the edges of the actual layer
 
   102     /// and displays the path represented by the actual edge.
 
   105       for(EdgeIt e(actuallayer);actuallayer.valid(e);actuallayer.next(e))
 
   107 	typedef typename P::EdgeIt PEdgeIt;
 
   110 	cout << "Edge " << id(tail(e)) << " - " << id(head(e)) << " in actual layer is";
 
   113 	  cout << endl << "Path";
 
   114 	  for(edgepath[e]->first(f); edgepath[e]->valid(f); edgepath[e]->next(f))
 
   116 	    cout << " " << sublayer->id(sublayer->tail(f)) << "-" << sublayer->id(sublayer->head(f));
 
   118 	  //cout << EPGr2.id(EPGr2.head(f)) << endl;
 
   123 	  cout << " itself." <<endl;
 
   132     /// The base type of the node iterators.
 
   134     /// This is the base type of each node iterators,
 
   135     /// thus each kind of node iterator will convert to this.
 
   136     /// The Node type of the EdgePathGraph is the Node type of the actual layer.
 
   137     typedef typename Gact::Node Node;
 
   140     /// This iterator goes through each node.
 
   142     /// Its usage is quite simple, for example you can count the number
 
   143     /// of nodes in graph \c G of type \c Graph like this:
 
   146     ///for(Graph::NodeIt n(G);G.valid(n);G.next(n)) count++;
 
   148     /// The NodeIt type of the EdgePathGraph is the NodeIt type of the actual layer.
 
   149     typedef typename Gact::NodeIt NodeIt;
 
   152     /// The base type of the edge iterators.
 
   153     /// The Edge type of the EdgePathGraph is the Edge type of the actual layer.
 
   154     typedef typename  Gact::Edge Edge;
 
   157     /// This iterator goes trough the outgoing edges of a node.
 
   159     /// This iterator goes trough the \e outgoing edges of a certain node
 
   161     /// Its usage is quite simple, for example you can count the number
 
   162     /// of outgoing edges of a node \c n
 
   163     /// in graph \c G of type \c Graph as follows.
 
   166     ///for(Graph::OutEdgeIt e(G,n);G.valid(e);G.next(e)) count++;
 
   168     /// The OutEdgeIt type of the EdgePathGraph is the OutEdgeIt type of the actual layer.
 
   169     typedef typename Gact::OutEdgeIt OutEdgeIt;
 
   172     /// This iterator goes trough the incoming edges of a node.
 
   174     /// This iterator goes trough the \e incoming edges of a certain node
 
   176     /// Its usage is quite simple, for example you can count the number
 
   177     /// of outgoing edges of a node \c n
 
   178     /// in graph \c G of type \c Graph as follows.
 
   181     ///for(Graph::InEdgeIt e(G,n);G.valid(e);G.next(e)) count++;
 
   183     /// The InEdgeIt type of the EdgePathGraph is the InEdgeIt type of the actual layer.
 
   184     typedef typename Gact::InEdgeIt InEdgeIt;
 
   187     /// This iterator goes through each edge.
 
   189     /// This iterator goes through each edge of a graph.
 
   190     /// Its usage is quite simple, for example you can count the number
 
   191     /// of edges in a graph \c G of type \c Graph as follows:
 
   194     ///for(Graph::EdgeIt e(G);G.valid(e);G.next(e)) count++;
 
   196     /// The EdgeIt type of the EdgePathGraph is the EdgeIt type of the actual layer.
 
   197     typedef typename Gact::EdgeIt EdgeIt;
 
   200     /// First node of the graph.
 
   202     /// \retval i the first node.
 
   203     /// \return the first node.
 
   204     typename Gact::NodeIt &first(typename Gact::NodeIt &i) const { return actuallayer.first(i);}
 
   207     /// The first incoming edge.
 
   208     typename Gact::InEdgeIt &first(typename Gact::InEdgeIt &i, typename Gact::Node) const { return actuallayer.first(i);}
 
   211     /// The first outgoing edge.
 
   212     typename Gact::OutEdgeIt &first(typename Gact::OutEdgeIt &i, typename Gact::Node) const { return actuallayer.first(i);}
 
   215     //  SymEdgeIt &first(SymEdgeIt &, Node) const { return i;}
 
   216     /// The first edge of the Graph.
 
   217     typename Gact::EdgeIt &first(typename Gact::EdgeIt &i) const { return actuallayer.first(i);}
 
   220 //     Node getNext(Node) const {}
 
   221 //     InEdgeIt getNext(InEdgeIt) const {}
 
   222 //     OutEdgeIt getNext(OutEdgeIt) const {}
 
   223 //     //SymEdgeIt getNext(SymEdgeIt) const {}
 
   224 //     EdgeIt getNext(EdgeIt) const {}
 
   227     /// Go to the next node.
 
   228     typename Gact::NodeIt &next(typename Gact::NodeIt &i) const { return actuallayer.next(i);}
 
   229     /// Go to the next incoming edge.
 
   230     typename Gact::InEdgeIt &next(typename Gact::InEdgeIt &i) const { return actuallayer.next(i);}
 
   231     /// Go to the next outgoing edge.
 
   232     typename Gact::OutEdgeIt &next(typename Gact::OutEdgeIt &i) const { return actuallayer.next(i);}
 
   233     //SymEdgeIt &next(SymEdgeIt &) const {}
 
   234     /// Go to the next edge.
 
   235     typename Gact::EdgeIt &next(typename Gact::EdgeIt &i) const { return actuallayer.next(i);}
 
   237     ///Gives back the head node of an edge.
 
   238     typename Gact::Node head(typename Gact::Edge edge) const { return actuallayer.head(edge); }
 
   239     ///Gives back the tail node of an edge.
 
   240     typename Gact::Node tail(typename Gact::Edge edge) const { return actuallayer.tail(edge); }
 
   242     //   Node aNode(InEdgeIt) const {}
 
   243     //   Node aNode(OutEdgeIt) const {}
 
   244     //   Node aNode(SymEdgeIt) const {}
 
   246     //   Node bNode(InEdgeIt) const {}
 
   247     //   Node bNode(OutEdgeIt) const {}
 
   248     //   Node bNode(SymEdgeIt) const {}
 
   250     /// Checks if a node iterator is valid
 
   252     ///\todo Maybe, it would be better if iterator converted to
 
   253     ///bool directly, as Jacint prefers.
 
   254     bool valid(const typename Gact::Node& node) const { return actuallayer.valid(node);}
 
   255     /// Checks if an edge iterator is valid
 
   257     ///\todo Maybe, it would be better if iterator converted to
 
   258     ///bool directly, as Jacint prefers.
 
   259     bool valid(const typename Gact::Edge& edge) const { return actuallayer.valid(edge);}
 
   261     ///Gives back the \e id of a node.
 
   263     ///\warning Not all graph structures provide this feature.
 
   265     int id(const typename Gact::Node & node) const { return actuallayer.id(node);}
 
   266     ///Gives back the \e id of an edge.
 
   268     ///\warning Not all graph structures provide this feature.
 
   270     int id(const typename Gact::Edge & edge) const { return actuallayer.id(edge);}
 
   272     //void setInvalid(Node &) const {};
 
   273     //void setInvalid(Edge &) const {};
 
   275     ///Add a new node to the graph.
 
   277     /// \return the new node.
 
   279     typename Gact::Node addNode() { return actuallayer.addNode();}
 
   280     ///Add a new edge to the graph.
 
   282     ///Add a new edge to the graph with tail node \c tail
 
   283     ///and head node \c head.
 
   284     ///\return the new edge.
 
   285     typename Gact::Edge addEdge(typename Gact::Node node1, typename Gact::Node node2) { return actuallayer.addEdge(node1, node2);}
 
   287     /// Resets the graph.
 
   289     /// This function deletes all edges and nodes of the graph.
 
   290     /// It also frees the memory allocated to store them.
 
   291     void clear() {actuallayer.clear();}
 
   293     int nodeNum() const { return actuallayer.nodeNum();}
 
   294     int edgeNum() const { return actuallayer.edgeNum();}
 
   296     ///Read/write/reference map of the nodes to type \c T.
 
   298     ///Read/write/reference map of the nodes to type \c T.
 
   300     /// \todo We may need copy constructor
 
   301     /// \todo We may need conversion from other nodetype
 
   302     /// \todo We may need operator=
 
   303     /// \warning Making maps that can handle bool type (NodeMap<bool>)
 
   304     /// needs extra attention!
 
   306     template<class T> class NodeMap
 
   310       typedef Node KeyType;
 
   312       NodeMap(const EdgePathGraph &) {}
 
   313       NodeMap(const EdgePathGraph &, T) {}
 
   315       template<typename TT> NodeMap(const NodeMap<TT> &) {}
 
   317       /// Sets the value of a node.
 
   319       /// Sets the value associated with node \c i to the value \c t.
 
   322       // Gets the value of a node.
 
   323       //T get(Node i) const {return *(T*)0;}  //FIXME: Is it necessary?
 
   324       T &operator[](Node) {return *(T*)0;}
 
   325       const T &operator[](Node) const {return *(T*)0;}
 
   327       /// Updates the map if the graph has been changed
 
   329       /// \todo Do we need this?
 
   332       void update(T a) {}   //FIXME: Is it necessary
 
   335     ///Read/write/reference map of the edges to type \c T.
 
   337     ///Read/write/reference map of the edges to type \c T.
 
   338     ///It behaves exactly in the same way as \ref NodeMap.
 
   341     /// \todo We may need copy constructor
 
   342     /// \todo We may need conversion from other edgetype
 
   343     /// \todo We may need operator=
 
   344     template<class T> class EdgeMap
 
   348       typedef Edge KeyType;
 
   350       EdgeMap(const EdgePathGraph &) {}
 
   351       EdgeMap(const EdgePathGraph &, T ) {}
 
   353       ///\todo It can copy between different types.
 
   355       template<typename TT> EdgeMap(const EdgeMap<TT> &) {}
 
   358       //T get(Edge) const {return *(T*)0;}
 
   359       T &operator[](Edge) {return *(T*)0;}
 
   360       const T &operator[](Edge) const {return *(T*)0;}
 
   363       void update(T a) {}   //FIXME: Is it necessary
 
   367   /// An empty erasable graph class.
 
   369   /// This class provides all the common features of an \e erasable graph
 
   371   /// however completely without implementations and real data structures
 
   372   /// behind the interface.
 
   373   /// All graph algorithms should compile with this class, but it will not
 
   374   /// run properly, of course.
 
   376   /// \todo This blabla could be replaced by a sepatate description about
 
   379   /// It can be used for checking the interface compatibility,
 
   380   /// or it can serve as a skeleton of a new graph structure.
 
   382   /// Also, you will find here the full documentation of a certain graph
 
   383   /// feature, the documentation of a real graph imlementation
 
   384   /// like @ref ListGraph or
 
   385   /// @ref SmartGraph will just refer to this structure.
 
   386   template <typename P, typename Gact, typename Gsub>
 
   387   class ErasableEdgePathGraph : public EdgePathGraph<P, Gact, Gsub>
 
   391     void erase(typename Gact::Node n) {actuallayer.erase(n);}
 
   393     void erase(typename Gact::Edge e) {actuallayer.erase(e);}
 
   395     /// Defalult constructor.
 
   396     ErasableEdgePathGraph() {}
 
   398     ErasableEdgePathGraph(const EdgePathGraph<P, Gact, Gsub> &EPG) {}
 
   407 #endif // LEMON_SKELETON_GRAPH_H