Some comments and minor additions to the AdvancedController.
     2  * src/lemon/preflow.h - Part of LEMON, a generic C++ optimization library
 
     4  * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
 
     5  * (Egervary Combinatorial Optimization Research Group, EGRES).
 
     7  * Permission to use, modify and distribute this software is granted
 
     8  * provided that this copyright notice appears in all copies. For
 
     9  * precise terms see the accompanying LICENSE file.
 
    11  * This software is provided "AS IS" with no warranty of any kind,
 
    12  * express or implied, and with no claim as to its suitability for any
 
    17 #ifndef LEMON_PREFLOW_H
 
    18 #define LEMON_PREFLOW_H
 
    23 #include <lemon/invalid.h>
 
    24 #include <lemon/maps.h>
 
    25 #include <lemon/graph_utils.h>
 
    29 /// Implementation of the preflow algorithm.
 
    33   /// \addtogroup flowalgs
 
    36   ///%Preflow algorithms class.
 
    38   ///This class provides an implementation of the \e preflow \e
 
    39   ///algorithm producing a flow of maximum value in a directed
 
    40   ///graph. The preflow algorithms are the fastest max flow algorithms
 
    41   ///up to now. The \e source node, the \e target node, the \e
 
    42   ///capacity of the edges and the \e starting \e flow value of the
 
    43   ///edges should be passed to the algorithm through the
 
    44   ///constructor. It is possible to change these quantities using the
 
    45   ///functions \ref setSource, \ref setTarget, \ref setCap and \ref
 
    48   ///After running \ref lemon::Preflow::phase1() "phase1()"
 
    49   ///or \ref lemon::Preflow::run() "run()", the maximal flow
 
    50   ///value can be obtained by calling \ref flowValue(). The minimum
 
    51   ///value cut can be written into a <tt>bool</tt> node map by
 
    52   ///calling \ref minCut(). (\ref minMinCut() and \ref maxMinCut() writes
 
    53   ///the inclusionwise minimum and maximum of the minimum value cuts,
 
    56   ///\param Graph The directed graph type the algorithm runs on.
 
    57   ///\param Num The number type of the capacities and the flow values.
 
    58   ///\param CapMap The capacity map type.
 
    59   ///\param FlowMap The flow map type.
 
    61   ///\author Jacint Szabo 
 
    62   template <typename Graph, typename Num,
 
    63 	    typename CapMap=typename Graph::template EdgeMap<Num>,
 
    64             typename FlowMap=typename Graph::template EdgeMap<Num> >
 
    67     typedef typename Graph::Node Node;
 
    68     typedef typename Graph::NodeIt NodeIt;
 
    69     typedef typename Graph::EdgeIt EdgeIt;
 
    70     typedef typename Graph::OutEdgeIt OutEdgeIt;
 
    71     typedef typename Graph::InEdgeIt InEdgeIt;
 
    73     typedef typename Graph::template NodeMap<Node> NNMap;
 
    74     typedef typename std::vector<Node> VecNode;
 
    79     const CapMap* capacity;
 
    81     int n;      //the number of nodes of G
 
    83     typename Graph::template NodeMap<int> level;  
 
    84     typename Graph::template NodeMap<Num> excess;
 
    86     // constants used for heuristics
 
    87     static const int H0=20;
 
    88     static const int H1=1;
 
    92     ///Indicates the property of the starting flow map.
 
    94     ///Indicates the property of the starting flow map. The meanings are as follows:
 
    95     ///- \c ZERO_FLOW: constant zero flow
 
    96     ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to
 
    97     ///the sum of the out-flows in every node except the \e source and
 
    99     ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at 
 
   100     ///least the sum of the out-flows in every node except the \e source.
 
   101     ///- \c NO_FLOW: indicates an unspecified edge map. \c flow will be 
 
   102     ///set to the constant zero flow in the beginning of
 
   103     ///the algorithm in this case.
 
   112     ///Indicates the state of the preflow algorithm.
 
   114     ///Indicates the state of the preflow algorithm. The meanings are as follows:
 
   115     ///- \c AFTER_NOTHING: before running the algorithm or at an unspecified state.
 
   116     ///- \c AFTER_PREFLOW_PHASE_1: right after running \c phase1
 
   117     ///- \c AFTER_PREFLOW_PHASE_2: after running \ref phase2()
 
   121       AFTER_PREFLOW_PHASE_1,      
 
   122       AFTER_PREFLOW_PHASE_2
 
   127     StatusEnum status; // Do not needle this flag only if necessary.
 
   130     ///The constructor of the class.
 
   132     ///The constructor of the class. 
 
   133     ///\param _G The directed graph the algorithm runs on. 
 
   134     ///\param _s The source node.
 
   135     ///\param _t The target node.
 
   136     ///\param _capacity The capacity of the edges. 
 
   137     ///\param _flow The flow of the edges. 
 
   138     ///Except the graph, all of these parameters can be reset by
 
   139     ///calling \ref setSource, \ref setTarget, \ref setCap and \ref
 
   141       Preflow(const Graph& _G, Node _s, Node _t, 
 
   142 	      const CapMap& _capacity, FlowMap& _flow) :
 
   143 	g(&_G), s(_s), t(_t), capacity(&_capacity),
 
   144 	flow(&_flow), n(countNodes(_G)), level(_G), excess(_G,0), 
 
   145 	flow_prop(NO_FLOW), status(AFTER_NOTHING) { }
 
   149     ///Runs the preflow algorithm.  
 
   151     ///Runs the preflow algorithm.
 
   158     ///Runs the preflow algorithm.  
 
   160     ///Runs the preflow algorithm. 
 
   161     ///\pre The starting flow map must be
 
   162     /// - a constant zero flow if \c fp is \c ZERO_FLOW,
 
   163     /// - an arbitrary flow if \c fp is \c GEN_FLOW,
 
   164     /// - an arbitrary preflow if \c fp is \c PRE_FLOW,
 
   165     /// - any map if \c fp is NO_FLOW.
 
   166     ///If the starting flow map is a flow or a preflow then 
 
   167     ///the algorithm terminates faster.
 
   168     void run(FlowEnum fp) {
 
   173     ///Runs the first phase of the preflow algorithm.
 
   175     ///The preflow algorithm consists of two phases, this method runs
 
   176     ///the first phase. After the first phase the maximum flow value
 
   177     ///and a minimum value cut can already be computed, though a
 
   178     ///maximum flow is not yet obtained. So after calling this method
 
   179     ///\ref flowValue returns the value of a maximum flow and \ref
 
   180     ///minCut returns a minimum cut.     
 
   181     ///\warning \ref minMinCut and \ref maxMinCut do not give minimum
 
   182     ///value cuts unless calling \ref phase2.  
 
   183     ///\pre The starting flow must be 
 
   184     ///- a constant zero flow if \c fp is \c ZERO_FLOW, 
 
   185     ///- an arbitary flow if \c fp is \c GEN_FLOW, 
 
   186     ///- an arbitary preflow if \c fp is \c PRE_FLOW, 
 
   187     ///- any map if \c fp is NO_FLOW.
 
   188     void phase1(FlowEnum fp)
 
   195     ///Runs the first phase of the preflow algorithm.
 
   197     ///The preflow algorithm consists of two phases, this method runs
 
   198     ///the first phase. After the first phase the maximum flow value
 
   199     ///and a minimum value cut can already be computed, though a
 
   200     ///maximum flow is not yet obtained. So after calling this method
 
   201     ///\ref flowValue returns the value of a maximum flow and \ref
 
   202     ///minCut returns a minimum cut.
 
   203     ///\warning \ref minCut(), \ref minMinCut() and \ref maxMinCut() do not
 
   204     ///give minimum value cuts unless calling \ref phase2().
 
   207       int heur0=(int)(H0*n);  //time while running 'bound decrease'
 
   208       int heur1=(int)(H1*n);  //time while running 'highest label'
 
   209       int heur=heur1;         //starting time interval (#of relabels)
 
   213       //It is 0 in case 'bound decrease' and 1 in case 'highest label'
 
   216       //Needed for 'bound decrease', true means no active 
 
   217       //nodes are above bound b.
 
   219       int k=n-2;  //bound on the highest level under n containing a node
 
   220       int b=k;    //bound on the highest level under n of an active node
 
   222       VecNode first(n, INVALID);
 
   223       NNMap next(*g, INVALID);
 
   225       NNMap left(*g, INVALID);
 
   226       NNMap right(*g, INVALID);
 
   227       VecNode level_list(n,INVALID);
 
   228       //List of the nodes in level i<n, set to n.
 
   230       preflowPreproc(first, next, level_list, left, right);
 
   232       //Push/relabel on the highest level active nodes.
 
   235 	  if ( !what_heur && !end && k > 0 ) {
 
   241 	if ( first[b]==INVALID ) --b;
 
   246 	  int newlevel=push(w, next, first);
 
   247 	  if ( excess[w] > 0 ) relabel(w, newlevel, first, next, level_list, 
 
   248 				       left, right, b, k, what_heur);
 
   251 	  if ( numrelabel >= heur ) {
 
   266       status=AFTER_PREFLOW_PHASE_1;
 
   271     //   list 'level_list' on the nodes on level i implemented by hand
 
   272     //   stack 'active' on the active nodes on level i      
 
   273     //   runs heuristic 'highest label' for H1*n relabels
 
   274     //   runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label'
 
   275     //   Parameters H0 and H1 are initialized to 20 and 1.
 
   278     ///Runs the second phase of the preflow algorithm.
 
   280     ///The preflow algorithm consists of two phases, this method runs
 
   281     ///the second phase. After calling \ref phase1 and then \ref
 
   282     ///phase2, \ref flow contains a maximum flow, \ref flowValue
 
   283     ///returns the value of a maximum flow, \ref minCut returns a
 
   284     ///minimum cut, while the methods \ref minMinCut and \ref
 
   285     ///maxMinCut return the inclusionwise minimum and maximum cuts of
 
   286     ///minimum value, resp.  \pre \ref phase1 must be called before.
 
   290       int k=n-2;  //bound on the highest level under n containing a node
 
   291       int b=k;    //bound on the highest level under n of an active node
 
   294       VecNode first(n, INVALID);
 
   295       NNMap next(*g, INVALID); 
 
   297       std::queue<Node> bfs_queue;
 
   300       while ( !bfs_queue.empty() ) {
 
   302 	Node v=bfs_queue.front();
 
   306 	for(InEdgeIt e(*g,v); e!=INVALID; ++e) {
 
   307 	  if ( (*capacity)[e] <= (*flow)[e] ) continue;
 
   309 	  if ( level[u] >= n ) {
 
   312 	    if ( excess[u] > 0 ) {
 
   313 	      next.set(u,first[l]);
 
   319 	for(OutEdgeIt e(*g,v); e!=INVALID; ++e) {
 
   320 	  if ( 0 >= (*flow)[e] ) continue;
 
   322 	  if ( level[u] >= n ) {
 
   325 	    if ( excess[u] > 0 ) {
 
   326 	      next.set(u,first[l]);
 
   337 	if ( first[b]==INVALID ) --b;
 
   341 	  int newlevel=push(w,next, first);
 
   344 	  if ( excess[w] > 0 ) {
 
   345 	    level.set(w,++newlevel);
 
   346 	    next.set(w,first[newlevel]);
 
   353       status=AFTER_PREFLOW_PHASE_2;
 
   356     /// Returns the value of the maximum flow.
 
   358     /// Returns the value of the maximum flow by returning the excess
 
   359     /// of the target node \c t. This value equals to the value of
 
   360     /// the maximum flow already after running \ref phase1.
 
   361     Num flowValue() const {
 
   366     ///Returns a minimum value cut.
 
   368     ///Sets \c M to the characteristic vector of a minimum value
 
   369     ///cut. This method can be called both after running \ref
 
   370     ///phase1 and \ref phase2. It is much faster after
 
   371     ///\ref phase1.  \pre M should be a bool-valued node-map. \pre
 
   372     ///If \ref minCut() is called after \ref phase2() then M should
 
   373     ///be initialized to false.
 
   374     template<typename _CutMap>
 
   375     void minCut(_CutMap& M) const {
 
   377 	case AFTER_PREFLOW_PHASE_1:
 
   378 	for(NodeIt v(*g); v!=INVALID; ++v) {
 
   386 	case AFTER_PREFLOW_PHASE_2:
 
   394     ///Returns the inclusionwise minimum of the minimum value cuts.
 
   396     ///Sets \c M to the characteristic vector of the minimum value cut
 
   397     ///which is inclusionwise minimum. It is computed by processing a
 
   398     ///bfs from the source node \c s in the residual graph.  \pre M
 
   399     ///should be a node map of bools initialized to false.  \pre \ref
 
   400     ///phase2 should already be run.
 
   401     template<typename _CutMap>
 
   402     void minMinCut(_CutMap& M) const {
 
   404       std::queue<Node> queue;
 
   408       while (!queue.empty()) {
 
   409 	Node w=queue.front();
 
   412 	for(OutEdgeIt e(*g,w) ; e!=INVALID; ++e) {
 
   414 	  if (!M[v] && (*flow)[e] < (*capacity)[e] ) {
 
   420 	for(InEdgeIt e(*g,w) ; e!=INVALID; ++e) {
 
   422 	  if (!M[v] && (*flow)[e] > 0 ) {
 
   430     ///Returns the inclusionwise maximum of the minimum value cuts.
 
   432     ///Sets \c M to the characteristic vector of the minimum value cut
 
   433     ///which is inclusionwise maximum. It is computed by processing a
 
   434     ///backward bfs from the target node \c t in the residual graph.
 
   435     ///\pre \ref phase2() or run() should already be run.
 
   436     template<typename _CutMap>
 
   437     void maxMinCut(_CutMap& M) const {
 
   439       for(NodeIt v(*g) ; v!=INVALID; ++v) M.set(v, true);
 
   441       std::queue<Node> queue;
 
   446       while (!queue.empty()) {
 
   447         Node w=queue.front();
 
   450 	for(InEdgeIt e(*g,w) ; e!=INVALID; ++e) {
 
   452 	  if (M[v] && (*flow)[e] < (*capacity)[e] ) {
 
   458 	for(OutEdgeIt e(*g,w) ; e!=INVALID; ++e) {
 
   460 	  if (M[v] && (*flow)[e] > 0 ) {
 
   468     ///Sets the source node to \c _s.
 
   470     ///Sets the source node to \c _s.
 
   472     void setSource(Node _s) { 
 
   474       if ( flow_prop != ZERO_FLOW ) flow_prop=NO_FLOW;
 
   475       status=AFTER_NOTHING; 
 
   478     ///Sets the target node to \c _t.
 
   480     ///Sets the target node to \c _t.
 
   482     void setTarget(Node _t) { 
 
   484       if ( flow_prop == GEN_FLOW ) flow_prop=PRE_FLOW;
 
   485       status=AFTER_NOTHING; 
 
   488     /// Sets the edge map of the capacities to _cap.
 
   490     /// Sets the edge map of the capacities to _cap.
 
   492     void setCap(const CapMap& _cap) { 
 
   494       status=AFTER_NOTHING; 
 
   497     /// Sets the edge map of the flows to _flow.
 
   499     /// Sets the edge map of the flows to _flow.
 
   501     void setFlow(FlowMap& _flow) { 
 
   504       status=AFTER_NOTHING; 
 
   510     int push(Node w, NNMap& next, VecNode& first) {
 
   514       int newlevel=n;       //bound on the next level of w
 
   516       for(OutEdgeIt e(*g,w) ; e!=INVALID; ++e) {
 
   517 	if ( (*flow)[e] >= (*capacity)[e] ) continue;
 
   520 	if( lev > level[v] ) { //Push is allowed now
 
   522 	  if ( excess[v]<=0 && v!=t && v!=s ) {
 
   523 	    next.set(v,first[level[v]]);
 
   527 	  Num cap=(*capacity)[e];
 
   531 	  if ( remcap >= exc ) { //A nonsaturating push.
 
   533 	    flow->set(e, flo+exc);
 
   534 	    excess.set(v, excess[v]+exc);
 
   538 	  } else { //A saturating push.
 
   540 	    excess.set(v, excess[v]+remcap);
 
   543 	} else if ( newlevel > level[v] ) newlevel = level[v];
 
   547 	for(InEdgeIt e(*g,w) ; e!=INVALID; ++e) {
 
   549 	  if( (*flow)[e] <= 0 ) continue;
 
   552 	  if( lev > level[v] ) { //Push is allowed now
 
   554 	    if ( excess[v]<=0 && v!=t && v!=s ) {
 
   555 	      next.set(v,first[level[v]]);
 
   561 	    if ( flo >= exc ) { //A nonsaturating push.
 
   563 	      flow->set(e, flo-exc);
 
   564 	      excess.set(v, excess[v]+exc);
 
   567 	    } else {  //A saturating push.
 
   569 	      excess.set(v, excess[v]+flo);
 
   573 	  } else if ( newlevel > level[v] ) newlevel = level[v];
 
   576       } // if w still has excess after the out edge for cycle
 
   585     void preflowPreproc(VecNode& first, NNMap& next, 
 
   586 			VecNode& level_list, NNMap& left, NNMap& right)
 
   588       for(NodeIt v(*g); v!=INVALID; ++v) level.set(v,n);
 
   589       std::queue<Node> bfs_queue;
 
   591       if ( flow_prop == GEN_FLOW || flow_prop == PRE_FLOW ) {
 
   592 	//Reverse_bfs from t in the residual graph,
 
   593 	//to find the starting level.
 
   597 	while ( !bfs_queue.empty() ) {
 
   599 	  Node v=bfs_queue.front();
 
   603 	  for(InEdgeIt e(*g,v) ; e!=INVALID; ++e) {
 
   604 	    if ( (*capacity)[e] <= (*flow)[e] ) continue;
 
   606 	    if ( level[w] == n && w != s ) {
 
   608 	      Node z=level_list[l];
 
   609 	      if ( z!=INVALID ) left.set(z,w);
 
   616 	  for(OutEdgeIt e(*g,v) ; e!=INVALID; ++e) {
 
   617 	    if ( 0 >= (*flow)[e] ) continue;
 
   619 	    if ( level[w] == n && w != s ) {
 
   621 	      Node z=level_list[l];
 
   622 	      if ( z!=INVALID ) left.set(z,w);
 
   634 	for(EdgeIt e(*g); e!=INVALID; ++e) flow->set(e,0);
 
   636 	for(NodeIt v(*g); v!=INVALID; ++v) excess.set(v,0);
 
   638 	//Reverse_bfs from t, to find the starting level.
 
   642 	while ( !bfs_queue.empty() ) {
 
   644 	  Node v=bfs_queue.front();
 
   648 	  for(InEdgeIt e(*g,v) ; e!=INVALID; ++e) {
 
   650 	    if ( level[w] == n && w != s ) {
 
   652 	      Node z=level_list[l];
 
   653 	      if ( z!=INVALID ) left.set(z,w);
 
   662 	for(OutEdgeIt e(*g,s) ; e!=INVALID; ++e) {
 
   663 	  Num c=(*capacity)[e];
 
   664 	  if ( c <= 0 ) continue;
 
   666 	  if ( level[w] < n ) {
 
   667 	    if ( excess[w] <= 0 && w!=t ) { //putting into the stack
 
   668 	      next.set(w,first[level[w]]);
 
   672 	    excess.set(w, excess[w]+c);
 
   678 	for(NodeIt v(*g); v!=INVALID; ++v) excess.set(v,0);
 
   681 	  for(InEdgeIt e(*g,t) ; e!=INVALID; ++e) exc+=(*flow)[e];
 
   682 	  for(OutEdgeIt e(*g,t) ; e!=INVALID; ++e) exc-=(*flow)[e];
 
   687 	for(OutEdgeIt e(*g,s); e!=INVALID; ++e)	{
 
   688 	  Num rem=(*capacity)[e]-(*flow)[e];
 
   689 	  if ( rem <= 0 ) continue;
 
   691 	  if ( level[w] < n ) {
 
   692 	    if ( excess[w] <= 0 && w!=t ) { //putting into the stack
 
   693 	      next.set(w,first[level[w]]);
 
   696 	    flow->set(e, (*capacity)[e]);
 
   697 	    excess.set(w, excess[w]+rem);
 
   701 	for(InEdgeIt e(*g,s); e!=INVALID; ++e) {
 
   702 	  if ( (*flow)[e] <= 0 ) continue;
 
   704 	  if ( level[w] < n ) {
 
   705 	    if ( excess[w] <= 0 && w!=t ) {
 
   706 	      next.set(w,first[level[w]]);
 
   709 	    excess.set(w, excess[w]+(*flow)[e]);
 
   717 	for(OutEdgeIt e(*g,s) ; e!=INVALID; ++e) {
 
   718 	  Num rem=(*capacity)[e]-(*flow)[e];
 
   719 	  if ( rem <= 0 ) continue;
 
   721 	  if ( level[w] < n ) flow->set(e, (*capacity)[e]);
 
   724 	for(InEdgeIt e(*g,s) ; e!=INVALID; ++e) {
 
   725 	  if ( (*flow)[e] <= 0 ) continue;
 
   727 	  if ( level[w] < n ) flow->set(e, 0);
 
   730 	//computing the excess
 
   731 	for(NodeIt w(*g); w!=INVALID; ++w) {
 
   733 	  for(InEdgeIt e(*g,w); e!=INVALID; ++e) exc+=(*flow)[e];
 
   734 	  for(OutEdgeIt e(*g,w); e!=INVALID; ++e) exc-=(*flow)[e];
 
   737 	  //putting the active nodes into the stack
 
   739 	    if ( exc > 0 && lev < n && Node(w) != t ) {
 
   740 	      next.set(w,first[lev]);
 
   749     void relabel(Node w, int newlevel, VecNode& first, NNMap& next, 
 
   750 		 VecNode& level_list, NNMap& left,
 
   751 		 NNMap& right, int& b, int& k, bool what_heur )
 
   756       Node right_n=right[w];
 
   760       if ( right_n!=INVALID ) {
 
   761 	if ( left_n!=INVALID ) {
 
   762 	  right.set(left_n, right_n);
 
   763 	  left.set(right_n, left_n);
 
   765 	  level_list[lev]=right_n;
 
   766 	  left.set(right_n, INVALID);
 
   769 	if ( left_n!=INVALID ) {
 
   770 	  right.set(left_n, INVALID);
 
   772 	  level_list[lev]=INVALID;
 
   777       if ( level_list[lev]==INVALID ) {
 
   780 	for (int i=lev; i!=k ; ) {
 
   781 	  Node v=level_list[++i];
 
   782 	  while ( v!=INVALID ) {
 
   786 	  level_list[i]=INVALID;
 
   787 	  if ( !what_heur ) first[i]=INVALID;
 
   797 	if ( newlevel == n ) level.set(w,n);
 
   799 	  level.set(w,++newlevel);
 
   800 	  next.set(w,first[newlevel]);
 
   802 	  if ( what_heur ) b=newlevel;
 
   803 	  if ( k < newlevel ) ++k;      //now k=newlevel
 
   804 	  Node z=level_list[newlevel];
 
   805 	  if ( z!=INVALID ) left.set(z,w);
 
   808 	  level_list[newlevel]=w;
 
   816 #endif //LEMON_PREFLOW_H