2 #ifndef LEMON_LP_SOLVER_WRAPPER_H
 
     3 #define LEMON_LP_SOLVER_WRAPPER
 
     7 ///\brief Dijkstra algorithm.
 
    22 //#include <sage_graph.h>
 
    23 //#include <lemon/list_graph.h>
 
    24 //#include <lemon/graph_wrapper.h>
 
    25 #include <lemon/invalid.h>
 
    26 //#include <bfs_dfs.h>
 
    28 //#include <lemon/max_flow.h>
 
    29 //#include <augmenting_flow.h>
 
    30 //#include <iter_map.h>
 
    42   /// \brief A partitioned vector with iterable classes.
 
    44   /// This class implements a container in which the data is stored in an 
 
    45   /// stl vector, the range is partitioned into sets and each set is 
 
    46   /// doubly linked in a list. 
 
    47   /// That is, each class is iterable by lemon iterators, and any member of 
 
    48   /// the vector can bo moved to an other class.
 
    50   class IterablePartition {
 
    54       int prev; //invalid az -1
 
    57     std::vector<Node> nodes;
 
    62     std::vector<Tip> tips;
 
    64     /// The classes are indexed by integers from \c 0 to \c classNum()-1.
 
    65     int classNum() const { return tips.size(); }
 
    66     /// This lemon style iterator iterates through a class. 
 
    68     /// Constructor. The number of classes is to be given which is fixed 
 
    69     /// over the life of the container. 
 
    70     /// The partition classes are indexed from 0 to class_num-1. 
 
    71     IterablePartition(int class_num) { 
 
    72       for (int i=0; i<class_num; ++i) {
 
    79     void befuz(ClassIt it, int class_id) {
 
    80       if (tips[class_id].first==-1) {
 
    81 	if (tips[class_id].last==-1) {
 
    82 	  nodes[it.i].prev=nodes[it.i].next=-1;
 
    83 	  tips[class_id].first=tips[class_id].last=it.i;
 
    86 	nodes[it.i].prev=tips[class_id].last;
 
    88 	nodes[tips[class_id].last].next=it.i;
 
    89 	tips[class_id].last=it.i;
 
    92     void kifuz(ClassIt it, int class_id) {
 
    93       if (tips[class_id].first==it.i) {
 
    94 	if (tips[class_id].last==it.i) {
 
    95 	  tips[class_id].first=tips[class_id].last=-1;
 
    97 	  tips[class_id].first=nodes[it.i].next;
 
    98 	  nodes[nodes[it.i].next].prev=-1;
 
   101 	if (tips[class_id].last==it.i) {
 
   102 	  tips[class_id].last=nodes[it.i].prev;
 
   103 	  nodes[nodes[it.i].prev].next=-1;
 
   105 	  nodes[nodes[it.i].next].prev=nodes[it.i].prev;
 
   106 	  nodes[nodes[it.i].prev].next=nodes[it.i].next;
 
   111     /// A new element with data \c t is pushed into the vector and into class 
 
   113     ClassIt push_back(const T& t, int class_id) { 
 
   117       int i=nodes.size()-1;
 
   121     /// A member is moved to an other class.
 
   122     void set(ClassIt it, int old_class_id, int new_class_id) {
 
   123       kifuz(it.i, old_class_id);
 
   124       befuz(it.i, new_class_id);
 
   126     /// Returns the data pointed by \c it.
 
   127     T& operator[](ClassIt it) { return nodes[it.i].data; }
 
   128     /// Returns the data pointed by \c it.
 
   129     const T& operator[](ClassIt it) const { return nodes[it.i].data; }
 
   132       friend class IterablePartition;
 
   136       /// Default constructor.
 
   138       /// This constructor constructs an iterator which points
 
   139       /// to the member of th container indexed by the integer _i.
 
   140       ClassIt(const int& _i) : i(_i) { }
 
   141       /// Invalid constructor.
 
   142       ClassIt(const Invalid&) : i(-1) { }
 
   144     /// First member of class \c class_id.
 
   145     ClassIt& first(ClassIt& it, int class_id) const {
 
   146       it.i=tips[class_id].first;
 
   150     ClassIt& next(ClassIt& it) const {
 
   151       it.i=nodes[it.i].next;
 
   154     /// True iff the iterator is valid.
 
   155     bool valid(const ClassIt& it) const { return it.i!=-1; }
 
   158   /// \brief Wrappers for LP solvers
 
   160   /// This class implements a lemon wrapper for glpk.
 
   161   /// Later other LP-solvers will be wrapped into lemon.
 
   162   /// The aim of this class is to give a general surface to different 
 
   163   /// solvers, i.e. it makes possible to write algorithms using LP's, 
 
   164   /// in which the solver can be changed to an other one easily.
 
   165   class LPSolverWrapper {
 
   173 //     Row(const Invalid&) : i(0) { }
 
   174 //     Row(const int& _i) : i(_i) { }
 
   175 //     operator int() const { return i; }
 
   177 //   class RowIt : public Row {
 
   179 //     RowIt(const Row& row) : Row(row) { }
 
   187 //     Col(const Invalid&) : i(0) { }
 
   188 //     Col(const int& _i) : i(_i) { }
 
   189 //     operator int() const { return i; }
 
   191 //   class ColIt : public Col {
 
   192 //     ColIt(const Col& col) : Col(col) { }
 
   199     typedef IterablePartition<int>::ClassIt RowIt;
 
   201     IterablePartition<int> row_iter_map;
 
   203     typedef IterablePartition<int>::ClassIt ColIt;
 
   205     IterablePartition<int> col_iter_map;
 
   206     //std::vector<int> row_id_to_lp_row_id;
 
   207     //std::vector<int> col_id_to_lp_col_id;
 
   211     const int INVALID_ID;
 
   215     LPSolverWrapper() : lp(lpx_create_prob()), 
 
   218 			//row_id_to_lp_row_id(), col_id_to_lp_col_id(), 
 
   219 			VALID_ID(0), INVALID_ID(1) {
 
   220       lpx_set_int_parm(lp, LPX_K_DUAL, 1);
 
   228       lpx_set_obj_dir(lp, LPX_MIN);
 
   232       lpx_set_obj_dir(lp, LPX_MAX);
 
   236       int i=lpx_add_cols(lp, 1);  
 
   238       col_iter_map.first(col_it, INVALID_ID);
 
   239       if (col_iter_map.valid(col_it)) { //van hasznalhato hely
 
   240 	col_iter_map.set(col_it, INVALID_ID, VALID_ID);
 
   241 	col_iter_map[col_it]=i;
 
   242 	//col_id_to_lp_col_id[col_iter_map[col_it]]=i;
 
   243       } else { //a cucc vegere kell inzertalni mert nincs szabad hely
 
   244 	//col_id_to_lp_col_id.push_back(i);
 
   245 	//int j=col_id_to_lp_col_id.size()-1;
 
   246 	col_it=col_iter_map.push_back(i, VALID_ID);
 
   248 //    edge_index_map.set(e, i);
 
   249 //    lpx_set_col_bnds(lp, i, LPX_DB, 0.0, 1.0);
 
   250 //    lpx_set_obj_coef(lp, i, cost[e]);    
 
   255       int i=lpx_add_rows(lp, 1);  
 
   257       row_iter_map.first(row_it, INVALID_ID);
 
   258       if (row_iter_map.valid(row_it)) { //van hasznalhato hely
 
   259 	row_iter_map.set(row_it, INVALID_ID, VALID_ID);
 
   260 	row_iter_map[row_it]=i;
 
   261       } else { //a cucc vegere kell inzertalni mert nincs szabad hely
 
   262 	row_it=row_iter_map.push_back(i, VALID_ID);
 
   266     //pair<RowIt, double>-bol kell megadni egy std range-et
 
   268     template <typename Begin, typename End>
 
   269     void setColCoeffs(const ColIt& col_it, 
 
   270 		      Begin begin, End end) {
 
   271       int mem_length=1+lpx_get_num_rows(lp);
 
   272       int* indices = new int[mem_length];
 
   273       double* doubles = new double[mem_length];
 
   275       for ( ; begin!=end; ++begin) {
 
   277 	indices[length]=row_iter_map[begin->first];
 
   278 	doubles[length]=begin->second;
 
   280       lpx_set_mat_col(lp, col_iter_map[col_it], length, indices, doubles);
 
   284     //pair<ColIt, double>-bol kell megadni egy std range-et
 
   286     template <typename Begin, typename End>
 
   287     void setRowCoeffs(const RowIt& row_it, 
 
   288 		      Begin begin, End end) {
 
   289       int mem_length=1+lpx_get_num_cols(lp);
 
   290       int* indices = new int[mem_length];
 
   291       double* doubles = new double[mem_length];
 
   293       for ( ; begin!=end; ++begin) {
 
   295 	indices[length]=col_iter_map[begin->first];
 
   296 	doubles[length]=begin->second;
 
   298       lpx_set_mat_row(lp, row_iter_map[row_it], length, indices, doubles);
 
   303     void eraseCol(const ColIt& col_it) {
 
   304       col_iter_map.set(col_it, VALID_ID, INVALID_ID);
 
   306       cols[1]=col_iter_map[col_it];
 
   307       lpx_del_cols(lp, 1, cols);
 
   308       col_iter_map[col_it]=0; //glpk specifikus
 
   310       for (col_iter_map.first(it, VALID_ID); 
 
   311 	   col_iter_map.valid(it); col_iter_map.next(it)) {
 
   312 	if (col_iter_map[it]>cols[1]) --col_iter_map[it];
 
   316     void eraseRow(const RowIt& row_it) {
 
   317       row_iter_map.set(row_it, VALID_ID, INVALID_ID);
 
   319       rows[1]=row_iter_map[row_it];
 
   320       lpx_del_rows(lp, 1, rows);
 
   321       row_iter_map[row_it]=0; //glpk specifikus
 
   323       for (row_iter_map.first(it, VALID_ID); 
 
   324 	   row_iter_map.valid(it); row_iter_map.next(it)) {
 
   325 	if (row_iter_map[it]>rows[1]) --row_iter_map[it];
 
   329     void setColBounds(const ColIt& col_it, int bound_type, 
 
   330 		      double lo, double up) {
 
   331       lpx_set_col_bnds(lp, col_iter_map[col_it], bound_type, lo, up);
 
   334     double getObjCoef(const ColIt& col_it) { 
 
   335       return lpx_get_obj_coef(lp, col_iter_map[col_it]);
 
   338     void setRowBounds(const RowIt& row_it, int bound_type, 
 
   339 		      double lo, double up) {
 
   340       lpx_set_row_bnds(lp, row_iter_map[row_it], bound_type, lo, up);
 
   343     void setObjCoef(const ColIt& col_it, double obj_coef) { 
 
   344       lpx_set_obj_coef(lp, col_iter_map[col_it], obj_coef);
 
   347     void solveSimplex() { lpx_simplex(lp); }
 
   349     void solvePrimalSimplex() { lpx_simplex(lp); }
 
   351     void solveDualSimplex() { lpx_simplex(lp); }
 
   353     double getPrimal(const ColIt& col_it) {
 
   354       return lpx_get_col_prim(lp, col_iter_map[col_it]);
 
   357     double getObjVal() { return lpx_get_obj_val(lp); }
 
   359     int rowNum() const { return lpx_get_num_rows(lp); }
 
   361     int colNum() const { return lpx_get_num_cols(lp); }
 
   363     int warmUp() { return lpx_warm_up(lp); }
 
   365     void printWarmUpStatus(int i) {
 
   367 	case LPX_E_OK: cout << "LPX_E_OK" << endl; break;
 
   368 	case LPX_E_EMPTY: cout << "LPX_E_EMPTY" << endl; break;	
 
   369 	case LPX_E_BADB: cout << "LPX_E_BADB" << endl; break;
 
   370 	case LPX_E_SING: cout << "LPX_E_SING" << endl; break;
 
   374     int getPrimalStatus() { return lpx_get_prim_stat(lp); }
 
   376     void printPrimalStatus(int i) {
 
   378 	case LPX_P_UNDEF: cout << "LPX_P_UNDEF" << endl; break;
 
   379 	case LPX_P_FEAS: cout << "LPX_P_FEAS" << endl; break;	
 
   380 	case LPX_P_INFEAS: cout << "LPX_P_INFEAS" << endl; break;
 
   381 	case LPX_P_NOFEAS: cout << "LPX_P_NOFEAS" << endl; break;
 
   385     int getDualStatus() { return lpx_get_dual_stat(lp); }
 
   387     void printDualStatus(int i) {
 
   389 	case LPX_D_UNDEF: cout << "LPX_D_UNDEF" << endl; break;
 
   390 	case LPX_D_FEAS: cout << "LPX_D_FEAS" << endl; break;	
 
   391 	case LPX_D_INFEAS: cout << "LPX_D_INFEAS" << endl; break;
 
   392 	case LPX_D_NOFEAS: cout << "LPX_D_NOFEAS" << endl; break;
 
   395     /// Returns the status of the slack variable assigned to row \c row_it.
 
   396     int getRowStat(const RowIt& row_it) { 
 
   397       return lpx_get_row_stat(lp, row_iter_map[row_it]); 
 
   400     void printRowStatus(int i) {
 
   402 	case LPX_BS: cout << "LPX_BS" << endl; break;
 
   403 	case LPX_NL: cout << "LPX_NL" << endl; break;	
 
   404 	case LPX_NU: cout << "LPX_NU" << endl; break;
 
   405 	case LPX_NF: cout << "LPX_NF" << endl; break;
 
   406 	case LPX_NS: cout << "LPX_NS" << endl; break;
 
   409     /// Returns the status of the variable assigned to column \c col_it.
 
   410     int getColStat(const ColIt& col_it) { 
 
   411       return lpx_get_col_stat(lp, col_iter_map[col_it]); 
 
   414     void printColStatus(int i) {
 
   416 	case LPX_BS: cout << "LPX_BS" << endl; break;
 
   417 	case LPX_NL: cout << "LPX_NL" << endl; break;	
 
   418 	case LPX_NU: cout << "LPX_NU" << endl; break;
 
   419 	case LPX_NF: cout << "LPX_NF" << endl; break;
 
   420 	case LPX_NS: cout << "LPX_NS" << endl; break;
 
   429 #endif //LEMON_LP_SOLVER_WRAPPER_H