2  * src/hugo/xy.h - Part of HUGOlib, a generic C++ optimization library
 
     4  * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
 
     5  * (Egervary Combinatorial Optimization Research Group, EGRES).
 
     7  * Permission to use, modify and distribute this software is granted
 
     8  * provided that this copyright notice appears in all copies. For
 
     9  * precise terms see the accompanying LICENSE file.
 
    11  * This software is provided "AS IS" with no warranty of any kind,
 
    12  * express or implied, and with no claim as to its suitability for any
 
    24 ///\brief A simple two dimensional vector and a bounding box implementation 
 
    26 /// The class \ref hugo::xy "xy" implements
 
    27 ///a two dimensional vector with the usual
 
    30 /// The class \ref hugo::BoundingBox "BoundingBox" can be used to determine
 
    31 /// the rectangular bounding box a set of \ref hugo::xy "xy"'s.
 
    33 ///\author Attila Bernath
 
    41   /// A two dimensional vector (plainvector) implementation
 
    43   /// A two dimensional vector (plainvector) implementation
 
    44   ///with the usual vector
 
    47   ///\author Attila Bernath
 
    55       ///Default constructor: both coordinates become 0
 
    58       ///Constructing the instance from coordinates
 
    59       xy(T a, T b) : x(a), y(b) { }
 
    62       ///Gives back the square of the norm of the vector
 
    67       ///Increments the left hand side by u
 
    68       xy<T>& operator +=(const xy<T>& u){
 
    74       ///Decrements the left hand side by u
 
    75       xy<T>& operator -=(const xy<T>& u){
 
    81       ///Multiplying the left hand side with a scalar
 
    82       xy<T>& operator *=(const T &u){
 
    88       ///Dividing the left hand side by a scalar
 
    89       xy<T>& operator /=(const T &u){
 
    95       ///Returns the scalar product of two vectors
 
    96       T operator *(const xy<T>& u){
 
   100       ///Returns the sum of two vectors
 
   101       xy<T> operator+(const xy<T> &u) const {
 
   106       ///Returns the difference of two vectors
 
   107       xy<T> operator-(const xy<T> &u) const {
 
   112       ///Returns a vector multiplied by a scalar
 
   113       xy<T> operator*(const T &u) const {
 
   118       ///Returns a vector divided by a scalar
 
   119       xy<T> operator/(const T &u) const {
 
   125       bool operator==(const xy<T> &u){
 
   126 	return (x==u.x) && (y==u.y);
 
   129       ///Testing inequality
 
   130       bool operator!=(xy u){
 
   131 	return  (x!=u.x) || (y!=u.y);
 
   136   ///Read a plainvector from a stream
 
   142   std::istream& operator>>(std::istream &is, xy<T> &z)
 
   149   ///Write a plainvector to a stream
 
   155   std::ostream& operator<<(std::ostream &os, xy<T> z)
 
   157     os << "(" << z.x << ", " << z.y << ")";
 
   162   /// A class to calculate or store the bounding box of plainvectors.
 
   164   /// A class to calculate or store the bounding box of plainvectors.
 
   166   ///\author Attila Bernath
 
   169       xy<T> bottom_left, top_right;
 
   173       ///Default constructor: an empty bounding box
 
   174       BoundingBox() { _empty = true; }
 
   176       ///Constructing the instance from one point
 
   177       BoundingBox(xy<T> a) { bottom_left=top_right=a; _empty = false; }
 
   179       ///Is there any point added
 
   184       ///Gives back the bottom left corner (if the bounding box is empty, then the return value is not defined) 
 
   185       xy<T> bottomLeft() const {
 
   189       ///Gives back the top right corner (if the bounding box is empty, then the return value is not defined) 
 
   190       xy<T> topRight() const {
 
   194       ///Checks whether a point is inside a bounding box
 
   195       bool inside(const xy<T>& u){
 
   199 	  return ((u.x-bottom_left.x)*(top_right.x-u.x) >= 0 &&
 
   200 		  (u.y-bottom_left.y)*(top_right.y-u.y) >= 0 );
 
   204       ///Increments a bounding box with a point
 
   205       BoundingBox& operator +=(const xy<T>& u){
 
   207 	  bottom_left=top_right=u;
 
   211 	  if (bottom_left.x > u.x) bottom_left.x = u.x;
 
   212 	  if (bottom_left.y > u.y) bottom_left.y = u.y;
 
   213 	  if (top_right.x < u.x) top_right.x = u.x;
 
   214 	  if (top_right.y < u.y) top_right.y = u.y;
 
   219       ///Sums a bounding box and a point
 
   220       BoundingBox operator +(const xy<T>& u){
 
   221 	BoundingBox b = *this;
 
   225       ///Increments a bounding box with an other bounding box
 
   226       BoundingBox& operator +=(const BoundingBox &u){
 
   228 	  *this += u.bottomLeft();
 
   229 	  *this += u.topRight();
 
   234       ///Sums two bounding boxes
 
   235       BoundingBox operator +(const BoundingBox& u){
 
   236 	BoundingBox b = *this;
 
   240     };//class Boundingbox