2 #ifndef HUGO_AUGMENTING_FLOW_H
 
     3 #define HUGO_AUGMENTING_FLOW_H
 
     8 #include <hugo/graph_wrapper.h>
 
    10 #include <hugo/invalid.h>
 
    11 #include <hugo/maps.h>
 
    12 #include <hugo/tight_edge_filter_map.h>
 
    15 /// \brief Maximum flow algorithms.
 
    22   /// Class for augmenting path flow algorithms.
 
    24   /// This class provides various algorithms for finding a flow of
 
    25   /// maximum value in a directed graph. The \e source node, the \e
 
    26   /// target node, the \e capacity of the edges and the \e starting \e
 
    27   /// flow value of the edges should be passed to the algorithm through the
 
    29 //   /// It is possible to change these quantities using the
 
    30 //   /// functions \ref resetSource, \ref resetTarget, \ref resetCap and
 
    31 //   /// \ref resetFlow. Before any subsequent runs of any algorithm of
 
    32 //   /// the class \ref resetFlow should be called. 
 
    34   /// After running an algorithm of the class, the actual flow value 
 
    35   /// can be obtained by calling \ref flowValue(). The minimum
 
    36   /// value cut can be written into a \c node map of \c bools by
 
    37   /// calling \ref minCut. (\ref minMinCut and \ref maxMinCut writes
 
    38   /// the inclusionwise minimum and maximum of the minimum value
 
    40   ///\param Graph The directed graph type the algorithm runs on.
 
    41   ///\param Num The number type of the capacities and the flow values.
 
    42   ///\param CapMap The capacity map type.
 
    43   ///\param FlowMap The flow map type.                                                                                                           
 
    44   ///\author Marton Makai
 
    45   template <typename Graph, typename Num,
 
    46 	    typename CapMap=typename Graph::template EdgeMap<Num>,
 
    47             typename FlowMap=typename Graph::template EdgeMap<Num> >
 
    48   class AugmentingFlow {
 
    50     typedef typename Graph::Node Node;
 
    51     typedef typename Graph::NodeIt NodeIt;
 
    52     typedef typename Graph::EdgeIt EdgeIt;
 
    53     typedef typename Graph::OutEdgeIt OutEdgeIt;
 
    54     typedef typename Graph::InEdgeIt InEdgeIt;
 
    59     const CapMap* capacity;
 
    61 //    int n;      //the number of nodes of G
 
    62     typedef ResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;   
 
    63     //typedef ExpResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;
 
    64     typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt;
 
    65     typedef typename ResGW::Edge ResGWEdge;
 
    66     //typedef typename ResGW::template NodeMap<bool> ReachedMap;
 
    67     typedef typename Graph::template NodeMap<int> ReachedMap;
 
    69     //level works as a bool map in augmenting path algorithms and is
 
    70     //used by bfs for storing reached information.  In preflow, it
 
    71     //shows the levels of nodes.     
 
    75     ///Indicates the property of the starting flow.
 
    77     ///Indicates the property of the starting flow. The meanings are as follows:
 
    78     ///- \c ZERO_FLOW: constant zero flow
 
    79     ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to
 
    80     ///the sum of the out-flows in every node except the \e source and
 
    82     ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at 
 
    83     ///least the sum of the out-flows in every node except the \e source.
 
    84     ///- \c NO_FLOW: indicates an unspecified edge map. \ref flow will be 
 
    85     ///set to the constant zero flow in the beginning of the algorithm in this case.
 
    96       AFTER_FAST_AUGMENTING, 
 
    97       AFTER_PRE_FLOW_PHASE_1,      
 
    98       AFTER_PRE_FLOW_PHASE_2
 
   101     /// Don not needle this flag only if necessary.
 
   103     int number_of_augmentations;
 
   106     template<typename IntMap>
 
   107     class TrickyReachedMap {
 
   110       int* number_of_augmentations;
 
   112       TrickyReachedMap(IntMap& _map, int& _number_of_augmentations) : 
 
   113 	map(&_map), number_of_augmentations(&_number_of_augmentations) { }
 
   114       void set(const Node& n, bool b) {
 
   116 	  map->set(n, *number_of_augmentations);
 
   118 	  map->set(n, *number_of_augmentations-1);
 
   120       bool operator[](const Node& n) const { 
 
   121 	return (*map)[n]==*number_of_augmentations; 
 
   125     AugmentingFlow(const Graph& _G, Node _s, Node _t, const CapMap& _capacity,
 
   127       g(&_G), s(_s), t(_t), capacity(&_capacity),
 
   128       flow(&_flow), //n(_G.nodeNum()), 
 
   129       level(_G), //excess(_G,0), 
 
   130       status(AFTER_NOTHING), number_of_augmentations(0) { }
 
   132     /// Starting from a flow, this method searches for an augmenting path
 
   133     /// according to the Edmonds-Karp algorithm
 
   134     /// and augments the flow on if any.
 
   135     /// The return value shows if the augmentation was succesful.
 
   136     bool augmentOnShortestPath();
 
   137     bool augmentOnShortestPath2();
 
   139     /// Starting from a flow, this method searches for an augmenting blocking
 
   140     /// flow according to Dinits' algorithm and augments the flow on if any.
 
   141     /// The blocking flow is computed in a physically constructed
 
   142     /// residual graph of type \c Mutablegraph.
 
   143     /// The return value show sif the augmentation was succesful.
 
   144     template<typename MutableGraph> bool augmentOnBlockingFlow();
 
   146     /// The same as \c augmentOnBlockingFlow<MutableGraph> but the
 
   147     /// residual graph is not constructed physically.
 
   148     /// The return value shows if the augmentation was succesful.
 
   149     bool augmentOnBlockingFlow2();
 
   151     template<typename _CutMap>
 
   152     void actMinCut(_CutMap& M) const {
 
   155 	case AFTER_PRE_FLOW_PHASE_1:
 
   156 //	std::cout << "AFTER_PRE_FLOW_PHASE_1" << std::endl;
 
   157 // 	for(g->first(v); g->valid(v); g->next(v)) {
 
   158 // 	  if (level[v] < n) {
 
   165       case AFTER_PRE_FLOW_PHASE_2:
 
   166 //	std::cout << "AFTER_PRE_FLOW_PHASE_2" << std::endl;
 
   169 //	std::cout << "AFTER_NOTHING" << std::endl;
 
   172       case AFTER_AUGMENTING:
 
   173 //	std::cout << "AFTER_AUGMENTING" << std::endl;
 
   174 	for(g->first(v); v!=INVALID; ++v) {
 
   182       case AFTER_FAST_AUGMENTING:
 
   183 //	std::cout << "AFTER_FAST_AUGMENTING" << std::endl;
 
   184 	for(g->first(v); v!=INVALID; ++v) {
 
   185 	  if (level[v]==number_of_augmentations) {
 
   195     template<typename _CutMap>
 
   196     void minMinCut(_CutMap& M) const {
 
   197       std::queue<Node> queue;
 
   202       while (!queue.empty()) {
 
   203         Node w=queue.front();
 
   207 	for(g->first(e,w) ; e!=INVALID; ++e) {
 
   209 	  if (!M[v] && (*flow)[e] < (*capacity)[e] ) {
 
   216 	for(g->first(f,w) ; f!=INVALID; ++f) {
 
   218 	  if (!M[v] && (*flow)[f] > 0 ) {
 
   226     template<typename _CutMap>
 
   227     void minMinCut2(_CutMap& M) const {
 
   228       ResGW res_graph(*g, *capacity, *flow);
 
   229       BfsIterator<ResGW, _CutMap> bfs(res_graph, M);
 
   230       bfs.pushAndSetReached(s);
 
   231       while (!bfs.finished()) ++bfs;
 
   234     Num flowValue() const {
 
   236       for (InEdgeIt e(*g, t); e!=INVALID; ++e) a+=(*flow)[e];
 
   237       for (OutEdgeIt e(*g, t); e!=INVALID; ++e) a-=(*flow)[e];
 
   239       //marci figyu: excess[t] epp ezt adja preflow 1. fazisa utan   
 
   246   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
 
   247   bool AugmentingFlow<Graph, Num, CapMap, FlowMap>::augmentOnShortestPath()
 
   249     ResGW res_graph(*g, *capacity, *flow);
 
   250     typename ResGW::ResCap res_cap(res_graph);
 
   254     //ReachedMap level(res_graph);
 
   255     for (typename Graph::NodeIt n(*g); n!=INVALID; ++n) level.set(n, 0);
 
   256     BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
 
   257     bfs.pushAndSetReached(s);
 
   259     typename ResGW::template NodeMap<ResGWEdge> pred(res_graph);
 
   260     pred.set(s, INVALID);
 
   262     typename ResGW::template NodeMap<Num> free(res_graph);
 
   264     //searching for augmenting path
 
   265     while ( !bfs.finished() ) {
 
   267       if (e!=INVALID && bfs.isBNodeNewlyReached()) {
 
   268 	Node v=res_graph.tail(e);
 
   269 	Node w=res_graph.head(e);
 
   271 	if (pred[v]!=INVALID) {
 
   272 	  free.set(w, std::min(free[v], res_cap[e]));
 
   274 	  free.set(w, res_cap[e]);
 
   276 	if (res_graph.head(e)==t) { _augment=true; break; }
 
   280     } //end of searching augmenting path
 
   284       Num augment_value=free[t];
 
   285       while (pred[n]!=INVALID) {
 
   287 	res_graph.augment(e, augment_value);
 
   292     status=AFTER_AUGMENTING;
 
   296   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
 
   297   bool AugmentingFlow<Graph, Num, CapMap, FlowMap>::augmentOnShortestPath2()
 
   299     ResGW res_graph(*g, *capacity, *flow);
 
   300     typename ResGW::ResCap res_cap(res_graph);
 
   304     if (status!=AFTER_FAST_AUGMENTING) {
 
   305       for (typename Graph::NodeIt n(*g); n!=INVALID; ++n) level.set(n, 0); 
 
   306       number_of_augmentations=1;
 
   308       ++number_of_augmentations;
 
   310     TrickyReachedMap<ReachedMap> 
 
   311       tricky_reached_map(level, number_of_augmentations);
 
   312     //ReachedMap level(res_graph);
 
   313 //    FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
 
   314     BfsIterator<ResGW, TrickyReachedMap<ReachedMap> > 
 
   315       bfs(res_graph, tricky_reached_map);
 
   316     bfs.pushAndSetReached(s);
 
   318     typename ResGW::template NodeMap<ResGWEdge> pred(res_graph);
 
   319     pred.set(s, INVALID);
 
   321     typename ResGW::template NodeMap<Num> free(res_graph);
 
   323     //searching for augmenting path
 
   324     while ( !bfs.finished() ) {
 
   326       if (e!=INVALID && bfs.isBNodeNewlyReached()) {
 
   327 	Node v=res_graph.tail(e);
 
   328 	Node w=res_graph.head(e);
 
   330 	if (pred[v]!=INVALID) {
 
   331 	  free.set(w, std::min(free[v], res_cap[e]));
 
   333 	  free.set(w, res_cap[e]);
 
   335 	if (res_graph.head(e)==t) { _augment=true; break; }
 
   339     } //end of searching augmenting path
 
   343       Num augment_value=free[t];
 
   344       while (pred[n]!=INVALID) {
 
   346 	res_graph.augment(e, augment_value);
 
   351     status=AFTER_FAST_AUGMENTING;
 
   356   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
 
   357   template<typename MutableGraph>
 
   358   bool AugmentingFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow()
 
   360     typedef MutableGraph MG;
 
   363     ResGW res_graph(*g, *capacity, *flow);
 
   364     typename ResGW::ResCap res_cap(res_graph);
 
   366     //bfs for distances on the residual graph
 
   367     //ReachedMap level(res_graph);
 
   368     for (typename Graph::NodeIt n(*g); n!=INVALID; ++n) level.set(n, 0);
 
   369     BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
 
   370     bfs.pushAndSetReached(s);
 
   371     typename ResGW::template NodeMap<int>
 
   372       dist(res_graph); //filled up with 0's
 
   374     //F will contain the physical copy of the residual graph
 
   375     //with the set of edges which are on shortest paths
 
   377     typename ResGW::template NodeMap<typename MG::Node>
 
   378       res_graph_to_F(res_graph);
 
   380       typename ResGW::NodeIt n;
 
   381       for(res_graph.first(n); n!=INVALID; ++n) 
 
   382 	res_graph_to_F.set(n, F.addNode());
 
   385     typename MG::Node sF=res_graph_to_F[s];
 
   386     typename MG::Node tF=res_graph_to_F[t];
 
   387     typename MG::template EdgeMap<ResGWEdge> original_edge(F);
 
   388     typename MG::template EdgeMap<Num> residual_capacity(F);
 
   390     while ( !bfs.finished() ) {
 
   393 	if (bfs.isBNodeNewlyReached()) {
 
   394 	  dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1);
 
   395 	  typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)],
 
   396 					res_graph_to_F[res_graph.head(e)]);
 
   397 	  //original_edge.update();
 
   398 	  original_edge.set(f, e);
 
   399 	  //residual_capacity.update();
 
   400 	  residual_capacity.set(f, res_cap[e]);
 
   402 	  if (dist[res_graph.head(e)]==(dist[res_graph.tail(e)]+1)) {
 
   403 	    typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)],
 
   404 					  res_graph_to_F[res_graph.head(e)]);
 
   405 	    //original_edge.update();
 
   406 	    original_edge.set(f, e);
 
   407 	    //residual_capacity.update();
 
   408 	    residual_capacity.set(f, res_cap[e]);
 
   413     } //computing distances from s in the residual graph
 
   419       //computing blocking flow with dfs
 
   420       DfsIterator< MG, typename MG::template NodeMap<bool> > dfs(F);
 
   421       typename MG::template NodeMap<typename MG::Edge> pred(F);
 
   422       pred.set(sF, INVALID);
 
   423       //invalid iterators for sources
 
   425       typename MG::template NodeMap<Num> free(F);
 
   427       dfs.pushAndSetReached(sF);
 
   428       while (!dfs.finished()) {
 
   430 	if (typename MG::Edge(dfs)!=INVALID) {
 
   431 	  if (dfs.isBNodeNewlyReached()) {
 
   432 	    typename MG::Node v=F.tail(dfs);
 
   433 	    typename MG::Node w=F.head(dfs);
 
   435 	    if (pred[v]!=INVALID) {
 
   436 	      free.set(w, std::min(free[v], residual_capacity[dfs]));
 
   438 	      free.set(w, residual_capacity[dfs]);
 
   447 	    F.erase(typename MG::Edge(dfs));
 
   453 	typename MG::Node n=tF;
 
   454 	Num augment_value=free[tF];
 
   455 	while (pred[n]!=INVALID) {
 
   456 	  typename MG::Edge e=pred[n];
 
   457 	  res_graph.augment(original_edge[e], augment_value);
 
   459 	  if (residual_capacity[e]==augment_value)
 
   462 	    residual_capacity.set(e, residual_capacity[e]-augment_value);
 
   468     status=AFTER_AUGMENTING;
 
   472   /// Blocking flow augmentation without constructing the layered 
 
   473   /// graph physically in which the blocking flow is computed.
 
   474   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
 
   475   bool AugmentingFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow2()
 
   479     ResGW res_graph(*g, *capacity, *flow);
 
   480     typename ResGW::ResCap res_cap(res_graph);
 
   482     //Potential map, for distances from s
 
   483     typename ResGW::template NodeMap<int> potential(res_graph, 0);
 
   484     typedef ConstMap<typename ResGW::Edge, int> Const1Map; 
 
   485     Const1Map const_1_map(1);
 
   486     TightEdgeFilterMap<ResGW, typename ResGW::template NodeMap<int>,
 
   487       Const1Map> tight_edge_filter(res_graph, potential, const_1_map);
 
   489     for (typename Graph::NodeIt n(*g); n!=INVALID; ++n) level.set(n, 0);
 
   490     BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
 
   491     bfs.pushAndSetReached(s);
 
   493     //computing distances from s in the residual graph
 
   494     while ( !bfs.finished() ) {
 
   496       if (e!=INVALID && bfs.isBNodeNewlyReached())
 
   497 	potential.set(res_graph.head(e), potential[res_graph.tail(e)]+1);
 
   501     //Subgraph containing the edges on some shortest paths 
 
   503     ConstMap<typename ResGW::Node, bool> true_map(true);
 
   504     typedef SubGraphWrapper<ResGW, ConstMap<typename ResGW::Node, bool>,
 
   505       TightEdgeFilterMap<ResGW, typename ResGW::template NodeMap<int>, 
 
   506       Const1Map> > FilterResGW;
 
   507     FilterResGW filter_res_graph(res_graph, true_map, tight_edge_filter);
 
   509     //Subgraph, which is able to delete edges which are already
 
   511     typename FilterResGW::template NodeMap<typename FilterResGW::Edge>
 
   512       first_out_edges(filter_res_graph);
 
   513     for (typename FilterResGW::NodeIt v(filter_res_graph); v!=INVALID; ++v)
 
   515 	(v, typename FilterResGW::OutEdgeIt(filter_res_graph, v));
 
   517     typedef ErasingFirstGraphWrapper<FilterResGW, typename FilterResGW::
 
   518       template NodeMap<typename FilterResGW::Edge> > ErasingResGW;
 
   519     ErasingResGW erasing_res_graph(filter_res_graph, first_out_edges);
 
   526       //computing blocking flow with dfs
 
   527       DfsIterator< ErasingResGW,
 
   528 	typename ErasingResGW::template NodeMap<bool> >
 
   529 	dfs(erasing_res_graph);
 
   530       typename ErasingResGW::
 
   531 	template NodeMap<typename ErasingResGW::Edge> pred(erasing_res_graph);
 
   532       pred.set(s, INVALID);
 
   533       //invalid iterators for sources
 
   535       typename ErasingResGW::template NodeMap<Num>
 
   536 	free1(erasing_res_graph);
 
   538       dfs.pushAndSetReached
 
   540 	(typename ErasingResGW::Node
 
   541 	 (typename FilterResGW::Node
 
   542 	  (typename ResGW::Node(s)
 
   547       while (!dfs.finished()) {
 
   549 	if (typename ErasingResGW::Edge(dfs)!=INVALID) {
 
   550 	  if (dfs.isBNodeNewlyReached()) {
 
   552 	    typename ErasingResGW::Node v=erasing_res_graph.tail(dfs);
 
   553 	    typename ErasingResGW::Node w=erasing_res_graph.head(dfs);
 
   555 	    pred.set(w, typename ErasingResGW::Edge(dfs));
 
   556 	    if (pred[v]!=INVALID) {
 
   558 		(w, std::min(free1[v], res_cap
 
   559 			     [typename ErasingResGW::Edge(dfs)]));
 
   563 		 [typename ErasingResGW::Edge(dfs)]);
 
   572 	    erasing_res_graph.erase(dfs);
 
   578 	typename ErasingResGW::Node
 
   579 	  n=typename FilterResGW::Node(typename ResGW::Node(t));
 
   580 	Num augment_value=free1[n];
 
   581 	while (pred[n]!=INVALID) {
 
   582 	  typename ErasingResGW::Edge e=pred[n];
 
   583 	  res_graph.augment(e, augment_value);
 
   584 	  n=erasing_res_graph.tail(e);
 
   586 	    erasing_res_graph.erase(e);
 
   590     } //while (__augment)
 
   592     status=AFTER_AUGMENTING;
 
   599 #endif //HUGO_AUGMENTING_FLOW_H