work/marci/bfs_iterator.h BfsIterator5 -> BfsIterator, DfsIterator5 -> DfsIterator
     4  *template <Graph, T, Heap=FibHeap, LengthMap=Graph::EdgeMap<T> >
 
     8  *Dijkstra(Graph G, LengthMap length)
 
    15  *T dist(Node v) : After run(s) was run, it returns the distance from s to v. 
 
    16  *   Returns T() if v is not reachable from s.
 
    18  *Edge pred(Node v) : After run(s) was run, it returns the last 
 
    19  *   edge of a shortest s-v path. It is INVALID for s and for 
 
    20  *   the nodes not reachable from s.
 
    22  *bool reached(Node v) : After run(s) was run, it is true iff v is 
 
    27 #ifndef HUGO_DIJKSTRA_H
 
    28 #define HUGO_DIJKSTRA_H
 
    31 ///\brief Dijkstra algorithm.
 
    39   //Alpar: Changed the order of the parameters
 
    41   ///%Dijkstra algorithm class.
 
    43   ///This class provides an efficient implementation of %Dijkstra algorithm.
 
    44   ///The edge lengths are passed to the algorithm using a
 
    45   ///\ref ReadMapSkeleton "readable map",
 
    46   ///so it is easy to change it to any kind of length.
 
    48   ///The type of the length is determined by the \c ValueType of the length map.
 
    50   ///It is also possible to change the underlying priority heap.
 
    52   ///\param Graph The graph type the algorithm runs on.
 
    53   ///\param LengthMap This read-only
 
    56   ///lengths of the edges. It is read once for each edge, so the map
 
    57   ///may involve in relatively time consuming process to compute the edge
 
    58   ///length if it is necessary. The default map type is
 
    59   ///\ref GraphSkeleton::EdgeMap "Graph::EdgeMap<int>"
 
    60   ///\param Heap The heap type used by the %Dijkstra
 
    61   ///algorithm. The default
 
    62   ///is using \ref BinHeap "binary heap".
 
    65   template <typename Graph,
 
    69   template <typename Graph,
 
    70 	    typename LengthMap=typename Graph::EdgeMap<int>,
 
    71 	    template <class,class,class> class Heap = BinHeap >
 
    75     typedef typename Graph::Node Node;
 
    76     typedef typename Graph::NodeIt NodeIt;
 
    77     typedef typename Graph::Edge Edge;
 
    78     typedef typename Graph::OutEdgeIt OutEdgeIt;
 
    80     typedef typename LengthMap::ValueType ValueType;
 
    81     typedef typename Graph::NodeMap<Edge> PredMap;
 
    82     typedef typename Graph::NodeMap<Node> PredNodeMap;
 
    83     typedef typename Graph::NodeMap<ValueType> DistMap;
 
    87     const LengthMap& length;
 
    89     PredNodeMap pred_node;
 
    94     Dijkstra(Graph& _G, LengthMap& _length) :
 
    95       G(_G), length(_length), predecessor(_G), pred_node(_G), distance(_G) { }
 
    99     ///The distance of a node from the source.
 
   101     ///Returns the distance of a node from the source.
 
   102     ///\pre \ref run() must be called before using this function.
 
   103     ///\warning If node \c v in unreachable from the source the return value
 
   104     ///of this funcion is undefined.
 
   105     ValueType dist(Node v) const { return distance[v]; }
 
   106     ///Returns the edges of the shortest path tree.
 
   108     ///For a node \c v it returns the last edge of the shortest path
 
   109     ///from the source to \c v or INVALID if \c v is unreachable
 
   111     ///\pre \ref run() must be called before using this function.
 
   112     Edge pred(Node v) const { return predecessor[v]; }
 
   113     ///Returns the nodes of the shortest paths.
 
   115     ///For a node \c v it returns the last but one node of the shortest path
 
   116     ///from the source to \c v or INVALID if \c v is unreachable
 
   118     ///\pre \ref run() must be called before using this function.
 
   119     Node predNode(Node v) const { return pred_node[v]; }
 
   121     ///Returns a reference to the NodeMap of distances.
 
   123     ///\pre \ref run() must be called before using this function.
 
   125     const DistMap &distMap() const { return distance;}
 
   126     ///Returns a reference to the shortest path tree map.
 
   128     ///Returns a reference to the NodeMap of the edges of the
 
   129     ///shortest path tree.
 
   130     ///\pre \ref run() must be called before using this function.
 
   131     const PredMap &predMap() const { return predecessor;}
 
   132     ///Returns a reference to the map of nodes of  shortest paths.
 
   134     ///Returns a reference to the NodeMap of the last but one nodes of the
 
   136     ///\pre \ref run() must be called before using this function.
 
   137     const PredNodeMap &predNodeMap() const { return pred_node;}
 
   139     ///Checks if a node is reachable from the source.
 
   141     ///Returns \c true if \c v is reachable from the source.
 
   142     ///\warning the source node is reported to be unreached!
 
   143     ///\todo Is this what we want?
 
   144     ///\pre \ref run() must be called before using this function.
 
   146     bool reached(Node v) { return G.valid(predecessor[v]); }
 
   151   // **********************************************************************
 
   153   // **********************************************************************
 
   155   ///Runs %Dijkstra algorithm from node the source.
 
   157   ///This method runs the %Dijkstra algorithm from a source node \c s
 
   160   ///shortest path to each node. The algorithm computes
 
   161   ///- The shortest path tree.
 
   162   ///- The distance of each node from the source.
 
   163   template <typename Graph, typename LengthMap,
 
   164 	    template<class,class,class> class Heap >
 
   165   void Dijkstra<Graph,LengthMap,Heap>::run(Node s) {
 
   168     for ( G.first(u) ; G.valid(u) ; G.next(u) ) {
 
   169       predecessor.set(u,INVALID);
 
   170       pred_node.set(u,INVALID);
 
   171       // If a node is unreacheable, then why should be the dist=0?
 
   172       // distance.set(u,0);
 
   173       //      reach.set(u,false);
 
   176     typename Graph::NodeMap<int> heap_map(G,-1);
 
   178     Heap<Node,ValueType,typename Graph::NodeMap<int> > heap(heap_map);
 
   182       while ( !heap.empty() ) {
 
   185 	ValueType oldvalue=heap[v];
 
   187 	distance.set(v, oldvalue);
 
   189 	{ //FIXME this bracket is for e to be local
 
   192 	    G.valid(e); G.next(e)) {
 
   195 	  switch(heap.state(w)) {
 
   197 	    heap.push(w,oldvalue+length[e]); 
 
   198 	    predecessor.set(w,e);
 
   202 	    if ( oldvalue+length[e] < heap[w] ) {
 
   203 	      heap.decrease(w, oldvalue+length[e]); 
 
   204 	      predecessor.set(w,e);
 
   212       } //FIXME tis bracket
 
   216 } //END OF NAMESPACE HUGO