New functions in lp_glpk.cc. Sample file: lp_sample.cc.
     2 #ifndef LEMON_LP_SOLVER_WRAPPER_H
 
     3 #define LEMON_LP_SOLVER_WRAPPER_H
 
     7 ///\brief Dijkstra algorithm.
 
    24 //#include <sage_graph.h>
 
    25 //#include <lemon/list_graph.h>
 
    26 //#include <lemon/graph_wrapper.h>
 
    27 #include <lemon/invalid.h>
 
    28 //#include <bfs_dfs.h>
 
    30 //#include <lemon/max_flow.h>
 
    31 //#include <augmenting_flow.h>
 
    32 //#include <iter_map.h>
 
    44   /// \brief A partitioned vector with iterable classes.
 
    46   /// This class implements a container in which the data is stored in an 
 
    47   /// stl vector, the range is partitioned into sets and each set is 
 
    48   /// doubly linked in a list. 
 
    49   /// That is, each class is iterable by lemon iterators, and any member of 
 
    50   /// the vector can bo moved to an other class.
 
    52   class IterablePartition {
 
    56       int prev; //invalid az -1
 
    59     std::vector<Node> nodes;
 
    64     std::vector<Tip> tips;
 
    66     /// The classes are indexed by integers from \c 0 to \c classNum()-1.
 
    67     int classNum() const { return tips.size(); }
 
    68     /// This lemon style iterator iterates through a class. 
 
    70     /// Constructor. The number of classes is to be given which is fixed 
 
    71     /// over the life of the container. 
 
    72     /// The partition classes are indexed from 0 to class_num-1. 
 
    73     IterablePartition(int class_num) { 
 
    74       for (int i=0; i<class_num; ++i) {
 
    81     void befuz(ClassIt it, int class_id) {
 
    82       if (tips[class_id].first==-1) {
 
    83 	if (tips[class_id].last==-1) {
 
    84 	  nodes[it.i].prev=nodes[it.i].next=-1;
 
    85 	  tips[class_id].first=tips[class_id].last=it.i;
 
    88 	nodes[it.i].prev=tips[class_id].last;
 
    90 	nodes[tips[class_id].last].next=it.i;
 
    91 	tips[class_id].last=it.i;
 
    94     void kifuz(ClassIt it, int class_id) {
 
    95       if (tips[class_id].first==it.i) {
 
    96 	if (tips[class_id].last==it.i) {
 
    97 	  tips[class_id].first=tips[class_id].last=-1;
 
    99 	  tips[class_id].first=nodes[it.i].next;
 
   100 	  nodes[nodes[it.i].next].prev=-1;
 
   103 	if (tips[class_id].last==it.i) {
 
   104 	  tips[class_id].last=nodes[it.i].prev;
 
   105 	  nodes[nodes[it.i].prev].next=-1;
 
   107 	  nodes[nodes[it.i].next].prev=nodes[it.i].prev;
 
   108 	  nodes[nodes[it.i].prev].next=nodes[it.i].next;
 
   113     /// A new element with data \c t is pushed into the vector and into class 
 
   115     ClassIt push_back(const T& t, int class_id) { 
 
   119       int i=nodes.size()-1;
 
   123     /// A member is moved to an other class.
 
   124     void set(ClassIt it, int old_class_id, int new_class_id) {
 
   125       kifuz(it.i, old_class_id);
 
   126       befuz(it.i, new_class_id);
 
   128     /// Returns the data pointed by \c it.
 
   129     T& operator[](ClassIt it) { return nodes[it.i].data; }
 
   130     /// Returns the data pointed by \c it.
 
   131     const T& operator[](ClassIt it) const { return nodes[it.i].data; }
 
   134       friend class IterablePartition;
 
   138       /// Default constructor.
 
   140       /// This constructor constructs an iterator which points
 
   141       /// to the member of th container indexed by the integer _i.
 
   142       ClassIt(const int& _i) : i(_i) { }
 
   143       /// Invalid constructor.
 
   144       ClassIt(const Invalid&) : i(-1) { }
 
   146     /// First member of class \c class_id.
 
   147     ClassIt& first(ClassIt& it, int class_id) const {
 
   148       it.i=tips[class_id].first;
 
   152     ClassIt& next(ClassIt& it) const {
 
   153       it.i=nodes[it.i].next;
 
   156     /// True iff the iterator is valid.
 
   157     bool valid(const ClassIt& it) const { return it.i!=-1; }
 
   160   /// \brief Wrappers for LP solvers
 
   162   /// This class implements a lemon wrapper for glpk.
 
   163   /// Later other LP-solvers will be wrapped into lemon.
 
   164   /// The aim of this class is to give a general surface to different 
 
   165   /// solvers, i.e. it makes possible to write algorithms using LP's, 
 
   166   /// in which the solver can be changed to an other one easily.
 
   167   class LPSolverWrapper {
 
   175 //     Row(const Invalid&) : i(0) { }
 
   176 //     Row(const int& _i) : i(_i) { }
 
   177 //     operator int() const { return i; }
 
   179 //   class RowIt : public Row {
 
   181 //     RowIt(const Row& row) : Row(row) { }
 
   189 //     Col(const Invalid&) : i(0) { }
 
   190 //     Col(const int& _i) : i(_i) { }
 
   191 //     operator int() const { return i; }
 
   193 //   class ColIt : public Col {
 
   194 //     ColIt(const Col& col) : Col(col) { }
 
   201     typedef IterablePartition<int>::ClassIt RowIt;
 
   203     IterablePartition<int> row_iter_map;
 
   205     typedef IterablePartition<int>::ClassIt ColIt;
 
   207     IterablePartition<int> col_iter_map;
 
   208     //std::vector<int> row_id_to_lp_row_id;
 
   209     //std::vector<int> col_id_to_lp_col_id;
 
   213     const int INVALID_ID;
 
   217     LPSolverWrapper() : lp(lpx_create_prob()), 
 
   220 			//row_id_to_lp_row_id(), col_id_to_lp_col_id(), 
 
   221 			VALID_ID(0), INVALID_ID(1) {
 
   222       lpx_set_int_parm(lp, LPX_K_DUAL, 1);
 
   230       lpx_set_obj_dir(lp, LPX_MIN);
 
   234       lpx_set_obj_dir(lp, LPX_MAX);
 
   238       int i=lpx_add_cols(lp, 1);  
 
   240       col_iter_map.first(col_it, INVALID_ID);
 
   241       if (col_iter_map.valid(col_it)) { //van hasznalhato hely
 
   242 	col_iter_map.set(col_it, INVALID_ID, VALID_ID);
 
   243 	col_iter_map[col_it]=i;
 
   244 	//col_id_to_lp_col_id[col_iter_map[col_it]]=i;
 
   245       } else { //a cucc vegere kell inzertalni mert nincs szabad hely
 
   246 	//col_id_to_lp_col_id.push_back(i);
 
   247 	//int j=col_id_to_lp_col_id.size()-1;
 
   248 	col_it=col_iter_map.push_back(i, VALID_ID);
 
   250 //    edge_index_map.set(e, i);
 
   251 //    lpx_set_col_bnds(lp, i, LPX_DB, 0.0, 1.0);
 
   252 //    lpx_set_obj_coef(lp, i, cost[e]);    
 
   257       int i=lpx_add_rows(lp, 1);  
 
   259       row_iter_map.first(row_it, INVALID_ID);
 
   260       if (row_iter_map.valid(row_it)) { //van hasznalhato hely
 
   261 	row_iter_map.set(row_it, INVALID_ID, VALID_ID);
 
   262 	row_iter_map[row_it]=i;
 
   263       } else { //a cucc vegere kell inzertalni mert nincs szabad hely
 
   264 	row_it=row_iter_map.push_back(i, VALID_ID);
 
   268     //pair<RowIt, double>-bol kell megadni egy std range-et
 
   270     template <typename Begin, typename End>
 
   271     void setColCoeffs(const ColIt& col_it, 
 
   272 		      Begin begin, End end) {
 
   273       int mem_length=1+lpx_get_num_rows(lp);
 
   274       int* indices = new int[mem_length];
 
   275       double* doubles = new double[mem_length];
 
   277       for ( ; begin!=end; ++begin) {
 
   279 	indices[length]=row_iter_map[begin->first];
 
   280 	doubles[length]=begin->second;
 
   282       lpx_set_mat_col(lp, col_iter_map[col_it], length, indices, doubles);
 
   286     //pair<ColIt, double>-bol kell megadni egy std range-et
 
   288     template <typename Begin, typename End>
 
   289     void setRowCoeffs(const RowIt& row_it, 
 
   290 		      Begin begin, End end) {
 
   291       int mem_length=1+lpx_get_num_cols(lp);
 
   292       int* indices = new int[mem_length];
 
   293       double* doubles = new double[mem_length];
 
   295       for ( ; begin!=end; ++begin) {
 
   297 	indices[length]=col_iter_map[begin->first];
 
   298 	doubles[length]=begin->second;
 
   300       lpx_set_mat_row(lp, row_iter_map[row_it], length, indices, doubles);
 
   305     void eraseCol(const ColIt& col_it) {
 
   306       col_iter_map.set(col_it, VALID_ID, INVALID_ID);
 
   308       cols[1]=col_iter_map[col_it];
 
   309       lpx_del_cols(lp, 1, cols);
 
   310       col_iter_map[col_it]=0; //glpk specifikus
 
   312       for (col_iter_map.first(it, VALID_ID); 
 
   313 	   col_iter_map.valid(it); col_iter_map.next(it)) {
 
   314 	if (col_iter_map[it]>cols[1]) --col_iter_map[it];
 
   318     void eraseRow(const RowIt& row_it) {
 
   319       row_iter_map.set(row_it, VALID_ID, INVALID_ID);
 
   321       rows[1]=row_iter_map[row_it];
 
   322       lpx_del_rows(lp, 1, rows);
 
   323       row_iter_map[row_it]=0; //glpk specifikus
 
   325       for (row_iter_map.first(it, VALID_ID); 
 
   326 	   row_iter_map.valid(it); row_iter_map.next(it)) {
 
   327 	if (row_iter_map[it]>rows[1]) --row_iter_map[it];
 
   331     void setColBounds(const ColIt& col_it, int bound_type, 
 
   332 		      double lo, double up) {
 
   333       lpx_set_col_bnds(lp, col_iter_map[col_it], bound_type, lo, up);
 
   336     double getObjCoef(const ColIt& col_it) { 
 
   337       return lpx_get_obj_coef(lp, col_iter_map[col_it]);
 
   340     void setRowBounds(const RowIt& row_it, int bound_type, 
 
   341 		      double lo, double up) {
 
   342       lpx_set_row_bnds(lp, row_iter_map[row_it], bound_type, lo, up);
 
   345     void setObjCoef(const ColIt& col_it, double obj_coef) { 
 
   346       lpx_set_obj_coef(lp, col_iter_map[col_it], obj_coef);
 
   349     void solveSimplex() { lpx_simplex(lp); }
 
   351     void solvePrimalSimplex() { lpx_simplex(lp); }
 
   353     void solveDualSimplex() { lpx_simplex(lp); }
 
   355     double getPrimal(const ColIt& col_it) {
 
   356       return lpx_get_col_prim(lp, col_iter_map[col_it]);
 
   359     double getObjVal() { return lpx_get_obj_val(lp); }
 
   361     int rowNum() const { return lpx_get_num_rows(lp); }
 
   363     int colNum() const { return lpx_get_num_cols(lp); }
 
   365     int warmUp() { return lpx_warm_up(lp); }
 
   367     void printWarmUpStatus(int i) {
 
   369 	case LPX_E_OK: cout << "LPX_E_OK" << endl; break;
 
   370 	case LPX_E_EMPTY: cout << "LPX_E_EMPTY" << endl; break;	
 
   371 	case LPX_E_BADB: cout << "LPX_E_BADB" << endl; break;
 
   372 	case LPX_E_SING: cout << "LPX_E_SING" << endl; break;
 
   376     int getPrimalStatus() { return lpx_get_prim_stat(lp); }
 
   378     void printPrimalStatus(int i) {
 
   380 	case LPX_P_UNDEF: cout << "LPX_P_UNDEF" << endl; break;
 
   381 	case LPX_P_FEAS: cout << "LPX_P_FEAS" << endl; break;	
 
   382 	case LPX_P_INFEAS: cout << "LPX_P_INFEAS" << endl; break;
 
   383 	case LPX_P_NOFEAS: cout << "LPX_P_NOFEAS" << endl; break;
 
   387     int getDualStatus() { return lpx_get_dual_stat(lp); }
 
   389     void printDualStatus(int i) {
 
   391 	case LPX_D_UNDEF: cout << "LPX_D_UNDEF" << endl; break;
 
   392 	case LPX_D_FEAS: cout << "LPX_D_FEAS" << endl; break;	
 
   393 	case LPX_D_INFEAS: cout << "LPX_D_INFEAS" << endl; break;
 
   394 	case LPX_D_NOFEAS: cout << "LPX_D_NOFEAS" << endl; break;
 
   397     /// Returns the status of the slack variable assigned to row \c row_it.
 
   398     int getRowStat(const RowIt& row_it) { 
 
   399       return lpx_get_row_stat(lp, row_iter_map[row_it]); 
 
   402     void printRowStatus(int i) {
 
   404 	case LPX_BS: cout << "LPX_BS" << endl; break;
 
   405 	case LPX_NL: cout << "LPX_NL" << endl; break;	
 
   406 	case LPX_NU: cout << "LPX_NU" << endl; break;
 
   407 	case LPX_NF: cout << "LPX_NF" << endl; break;
 
   408 	case LPX_NS: cout << "LPX_NS" << endl; break;
 
   411     /// Returns the status of the variable assigned to column \c col_it.
 
   412     int getColStat(const ColIt& col_it) { 
 
   413       return lpx_get_col_stat(lp, col_iter_map[col_it]); 
 
   416     void printColStatus(int i) {
 
   418 	case LPX_BS: cout << "LPX_BS" << endl; break;
 
   419 	case LPX_NL: cout << "LPX_NL" << endl; break;	
 
   420 	case LPX_NU: cout << "LPX_NU" << endl; break;
 
   421 	case LPX_NF: cout << "LPX_NF" << endl; break;
 
   422 	case LPX_NS: cout << "LPX_NS" << endl; break;
 
   431 #endif //LEMON_LP_SOLVER_WRAPPER_H