- The number of gcc-4.0 warnings has significantly decreases.
- Some code clean-up in gui
     2  * lemon/max_matching.h - Part of LEMON, a generic C++ optimization library
 
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
 
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
 
     7  * Permission to use, modify and distribute this software is granted
 
     8  * provided that this copyright notice appears in all copies. For
 
     9  * precise terms see the accompanying LICENSE file.
 
    11  * This software is provided "AS IS" with no warranty of any kind,
 
    12  * express or implied, and with no claim as to its suitability for any
 
    17 #ifndef LEMON_MAX_MATCHING_H
 
    18 #define LEMON_MAX_MATCHING_H
 
    21 #include <lemon/invalid.h>
 
    22 #include <lemon/unionfind.h>
 
    23 #include <lemon/graph_utils.h>
 
    27 ///\brief Maximum matching algorithm.
 
    34   ///Edmonds' alternating forest maximum matching algorithm.
 
    36   ///This class provides Edmonds' alternating forest matching
 
    37   ///algorithm. The starting matching (if any) can be passed to the
 
    38   ///algorithm using read-in functions \ref readNMapNode, \ref
 
    39   ///readNMapEdge or \ref readEMapBool depending on the container. The
 
    40   ///resulting maximum matching can be attained by write-out functions
 
    41   ///\ref writeNMapNode, \ref writeNMapEdge or \ref writeEMapBool
 
    42   ///depending on the preferred container. 
 
    44   ///The dual side of a matching is a map of the nodes to
 
    45   ///MaxMatching::pos_enum, having values D, A and C showing the
 
    46   ///Gallai-Edmonds decomposition of the graph. The nodes in D induce
 
    47   ///a graph with factor-critical components, the nodes in A form the
 
    48   ///barrier, and the nodes in C induce a graph having a perfect
 
    49   ///matching. This decomposition can be attained by calling \ref
 
    50   ///writePos after running the algorithm. 
 
    52   ///\param Graph The undirected graph type the algorithm runs on.
 
    54   ///\author Jacint Szabo  
 
    55   template <typename Graph>
 
    60     typedef typename Graph::Node Node;
 
    61     typedef typename Graph::Edge Edge;
 
    62     typedef typename Graph::UndirEdge UndirEdge;
 
    63     typedef typename Graph::UndirEdgeIt UndirEdgeIt;
 
    64     typedef typename Graph::NodeIt NodeIt;
 
    65     typedef typename Graph::IncEdgeIt IncEdgeIt;
 
    67     typedef UnionFindEnum<Node, Graph::template NodeMap> UFE;
 
    71     ///Indicates the Gallai-Edmonds decomposition of the graph.
 
    73     ///Indicates the Gallai-Edmonds decomposition of the graph, which
 
    74     ///shows an upper bound on the size of a maximum matching. The
 
    75     ///nodes with pos_enum \c D induce a graph with factor-critical
 
    76     ///components, the nodes in \c A form the canonical barrier, and the
 
    77     ///nodes in \c C induce a graph having a perfect matching. 
 
    86     static const int HEUR_density=2;
 
    88     typename Graph::template NodeMap<Node> _mate;
 
    89     typename Graph::template NodeMap<pos_enum> position;
 
    93     MaxMatching(const Graph& _g) : g(_g), _mate(_g,INVALID), position(_g) {}
 
    95     ///Runs Edmonds' algorithm.
 
    97     ///Runs Edmonds' algorithm for sparse graphs (number of edges <
 
    98     ///2*number of nodes), and a heuristical Edmonds' algorithm with a
 
    99     ///heuristic of postponing shrinks for dense graphs. 
 
   101       if ( countUndirEdges(g) < HEUR_density*countNodes(g) ) {
 
   104       } else runEdmonds(1);
 
   108     ///Runs Edmonds' algorithm.
 
   110     ///If heur=0 it runs Edmonds' algorithm. If heur=1 it runs
 
   111     ///Edmonds' algorithm with a heuristic of postponing shrinks,
 
   112     ///giving a faster algorithm for dense graphs.  
 
   113     void runEdmonds( int heur = 1 ) {
 
   115       for(NodeIt v(g); v!=INVALID; ++v)
 
   118       typename Graph::template NodeMap<Node> ear(g,INVALID); 
 
   119       //undefined for the base nodes of the blossoms (i.e. for the
 
   120       //representative elements of UFE blossom) and for the nodes in C 
 
   122       typename UFE::MapType blossom_base(g);
 
   123       UFE blossom(blossom_base);
 
   124       typename UFE::MapType tree_base(g);
 
   126       //If these UFE's would be members of the class then also
 
   127       //blossom_base and tree_base should be a member.
 
   129       for(NodeIt v(g); v!=INVALID; ++v) {
 
   130 	if ( position[v]==C && _mate[v]==INVALID ) {
 
   134 	  if ( heur == 1 ) lateShrink( v, ear, blossom, tree );
 
   135 	  else normShrink( v, ear, blossom, tree );
 
   141     ///Finds a greedy matching starting from the actual matching.
 
   143     ///Starting form the actual matching stored, it finds a maximal
 
   145     void greedyMatching() {
 
   146       for(NodeIt v(g); v!=INVALID; ++v)
 
   147 	if ( _mate[v]==INVALID ) {
 
   148 	  for( IncEdgeIt e(g,v); e!=INVALID ; ++e ) {
 
   149 	    Node y=g.runningNode(e);
 
   150 	    if ( _mate[y]==INVALID && y!=v ) {
 
   159     ///Returns the size of the actual matching stored.
 
   161     ///Returns the size of the actual matching stored. After \ref
 
   162     ///run() it returns the size of a maximum matching in the graph.
 
   165       for(NodeIt v(g); v!=INVALID; ++v) {
 
   166 	if ( _mate[v]!=INVALID ) {
 
   174     ///Resets the actual matching to the empty matching.
 
   176     ///Resets the actual matching to the empty matching.  
 
   178     void resetMatching() {
 
   179       for(NodeIt v(g); v!=INVALID; ++v)
 
   180 	_mate.set(v,INVALID);      
 
   183     ///Returns the mate of a node in the actual matching.
 
   185     ///Returns the mate of a \c node in the actual matching. 
 
   186     ///Returns INVALID if the \c node is not covered by the actual matching. 
 
   187     Node mate(Node& node) const {
 
   191     ///Reads a matching from a \c Node valued \c Node map.
 
   193     ///Reads a matching from a \c Node valued \c Node map. This map
 
   194     ///must be \e symmetric, i.e. if \c map[u]==v then \c map[v]==u
 
   195     ///must hold, and \c uv will be an edge of the matching.
 
   196     template<typename NMapN>
 
   197     void readNMapNode(NMapN& map) {
 
   198       for(NodeIt v(g); v!=INVALID; ++v) {
 
   203     ///Writes the stored matching to a \c Node valued \c Node map.
 
   205     ///Writes the stored matching to a \c Node valued \c Node map. The
 
   206     ///resulting map will be \e symmetric, i.e. if \c map[u]==v then \c
 
   207     ///map[v]==u will hold, and now \c uv is an edge of the matching.
 
   208     template<typename NMapN>
 
   209     void writeNMapNode (NMapN& map) const {
 
   210       for(NodeIt v(g); v!=INVALID; ++v) {
 
   215     ///Reads a matching from an \c UndirEdge valued \c Node map.
 
   217     ///Reads a matching from an \c UndirEdge valued \c Node map. \c
 
   218     ///map[v] must be an \c UndirEdge incident to \c v. This map must
 
   219     ///have the property that if \c g.oppositeNode(u,map[u])==v then
 
   220     ///\c \c g.oppositeNode(v,map[v])==u holds, and now some edge
 
   221     ///joining \c u to \c v will be an edge of the matching.
 
   222     template<typename NMapE>
 
   223     void readNMapEdge(NMapE& map) {
 
   224      for(NodeIt v(g); v!=INVALID; ++v) {
 
   227 	  _mate.set(v,g.oppositeNode(v,e));
 
   231     ///Writes the matching stored to an \c UndirEdge valued \c Node map.
 
   233     ///Writes the stored matching to an \c UndirEdge valued \c Node
 
   234     ///map. \c map[v] will be an \c UndirEdge incident to \c v. This
 
   235     ///map will have the property that if \c g.oppositeNode(u,map[u])
 
   236     ///== v then \c map[u]==map[v] holds, and now this edge is an edge
 
   238     template<typename NMapE>
 
   239     void writeNMapEdge (NMapE& map)  const {
 
   240       typename Graph::template NodeMap<bool> todo(g,true); 
 
   241       for(NodeIt v(g); v!=INVALID; ++v) {
 
   242 	if ( todo[v] && _mate[v]!=INVALID ) {
 
   244 	  for(IncEdgeIt e(g,v); e!=INVALID; ++e) {
 
   245 	    if ( g.runningNode(e) == u ) {
 
   258     ///Reads a matching from a \c bool valued \c Edge map.
 
   260     ///Reads a matching from a \c bool valued \c Edge map. This map
 
   261     ///must have the property that there are no two incident edges \c
 
   262     ///e, \c f with \c map[e]==map[f]==true. The edges \c e with \c
 
   263     ///map[e]==true form the matching.
 
   264     template<typename EMapB>
 
   265     void readEMapBool(EMapB& map) {
 
   266       for(UndirEdgeIt e(g); e!=INVALID; ++e) {
 
   277     ///Writes the matching stored to a \c bool valued \c Edge map.
 
   279     ///Writes the matching stored to a \c bool valued \c Edge
 
   280     ///map. This map will have the property that there are no two
 
   281     ///incident edges \c e, \c f with \c map[e]==map[f]==true. The
 
   282     ///edges \c e with \c map[e]==true form the matching.
 
   283     template<typename EMapB>
 
   284     void writeEMapBool (EMapB& map) const {
 
   285       for(UndirEdgeIt e(g); e!=INVALID; ++e) map.set(e,false);
 
   287       typename Graph::template NodeMap<bool> todo(g,true); 
 
   288       for(NodeIt v(g); v!=INVALID; ++v) {
 
   289 	if ( todo[v] && _mate[v]!=INVALID ) {
 
   291 	  for(IncEdgeIt e(g,v); e!=INVALID; ++e) {
 
   292 	    if ( g.runningNode(e) == u ) {
 
   304     ///Writes the canonical decomposition of the graph after running
 
   307     ///After calling any run methods of the class, it writes the
 
   308     ///Gallai-Edmonds canonical decomposition of the graph. \c map
 
   309     ///must be a node map of \ref pos_enum 's.
 
   310     template<typename NMapEnum>
 
   311     void writePos (NMapEnum& map) const {
 
   312       for(NodeIt v(g); v!=INVALID; ++v)  map.set(v,position[v]);
 
   318     void lateShrink(Node v, typename Graph::template NodeMap<Node>& ear,  
 
   319 		    UFE& blossom, UFE& tree);
 
   321     void normShrink(Node v, typename Graph::template NodeMap<Node>& ear,  
 
   322 		    UFE& blossom, UFE& tree);
 
   324     bool noShrinkStep(Node x, typename Graph::template NodeMap<Node>& ear,  
 
   325 		      UFE& blossom, UFE& tree, std::queue<Node>& Q);
 
   327     void shrinkStep(Node& top, Node& middle, Node& bottom,
 
   328 		    typename Graph::template NodeMap<Node>& ear,  
 
   329 		    UFE& blossom, UFE& tree, std::queue<Node>& Q);
 
   331     void augment(Node x, typename Graph::template NodeMap<Node>& ear,  
 
   332 		 UFE& blossom, UFE& tree);
 
   337   // **********************************************************************
 
   339   // **********************************************************************
 
   342   template <typename Graph>
 
   343   void MaxMatching<Graph>::lateShrink(Node v, typename Graph::template NodeMap<Node>& ear,  
 
   344 				      UFE& blossom, UFE& tree) {
 
   346     std::queue<Node> Q;   //queue of the totally unscanned nodes
 
   349     //queue of the nodes which must be scanned for a possible shrink
 
   351     while ( !Q.empty() ) {
 
   354       if ( noShrinkStep( x, ear, blossom, tree, Q ) ) return;
 
   358     while ( !R.empty() ) {
 
   362       for( IncEdgeIt e(g,x); e!=INVALID ; ++e ) {
 
   363 	Node y=g.runningNode(e);
 
   365 	if ( position[y] == D && blossom.find(x) != blossom.find(y) ) { 
 
   366 	  //x and y must be in the same tree
 
   368 	  typename Graph::template NodeMap<bool> path(g,false);
 
   370 	  Node b=blossom.find(x);
 
   373 	  while ( b!=INVALID ) { 
 
   374 	    b=blossom.find(ear[b]);
 
   377 	  } //going till the root
 
   380 	  Node middle=blossom.find(top);
 
   382 	  while ( !path[middle] )
 
   383 	    shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
 
   387 	  middle=blossom.find(top);
 
   389 	  Node blossom_base=blossom.find(base);
 
   390 	  while ( middle!=blossom_base )
 
   391 	    shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
 
   393 	  blossom.makeRep(base);
 
   394 	} // if shrink is needed
 
   396 	while ( !Q.empty() ) {
 
   399 	  if ( noShrinkStep(x, ear, blossom, tree, Q) ) return;
 
   403     } // while ( !R.empty() )
 
   407   template <typename Graph>
 
   408   void MaxMatching<Graph>::normShrink(Node v,
 
   409 				      typename Graph::template
 
   411 				      UFE& blossom, UFE& tree) {
 
   412     std::queue<Node> Q;   //queue of the unscanned nodes
 
   414     while ( !Q.empty() ) {
 
   419       for( IncEdgeIt e(g,x); e!=INVALID; ++e ) {
 
   420 	Node y=g.runningNode(e);
 
   422 	switch ( position[y] ) {
 
   423 	case D:          //x and y must be in the same tree
 
   425 	  if ( blossom.find(x) != blossom.find(y) ) { //shrink
 
   426 	    typename Graph::template NodeMap<bool> path(g,false);
 
   428 	    Node b=blossom.find(x);
 
   431 	    while ( b!=INVALID ) { 
 
   432 	      b=blossom.find(ear[b]);
 
   435 	    } //going till the root
 
   438 	    Node middle=blossom.find(top);
 
   440 	    while ( !path[middle] )
 
   441 	      shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
 
   445 	    middle=blossom.find(top);
 
   447 	    Node blossom_base=blossom.find(base);
 
   448 	    while ( middle!=blossom_base )
 
   449 	      shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
 
   451 	    blossom.makeRep(base);
 
   455 	  if ( _mate[y]!=INVALID ) {   //grow
 
   464 	    tree.join(y,blossom.find(x));  
 
   468 	    augment(x, ear, blossom, tree);
 
   480   template <typename Graph>
 
   481   bool MaxMatching<Graph>::noShrinkStep(Node x,
 
   482 					typename Graph::template 
 
   484 					UFE& blossom, UFE& tree,
 
   485 					std::queue<Node>& Q) {
 
   486     for( IncEdgeIt e(g,x); e!= INVALID; ++e ) {
 
   487       Node y=g.runningNode(e);
 
   489       if ( position[y]==C ) {
 
   490 	if ( _mate[y]!=INVALID ) {       //grow
 
   498 	  tree.join(y,blossom.find(x));  
 
   502 	  augment(x, ear, blossom, tree);
 
   512   template <typename Graph>
 
   513   void MaxMatching<Graph>::shrinkStep(Node& top, Node& middle, Node& bottom,
 
   514 				      typename Graph::template
 
   516 				      UFE& blossom, UFE& tree,
 
   517 				      std::queue<Node>& Q) {
 
   520     while ( t!=middle ) {
 
   525     bottom=_mate[middle];
 
   526     position.set(bottom,D);
 
   529     Node oldmiddle=middle;
 
   530     middle=blossom.find(top);
 
   532     tree.erase(oldmiddle);
 
   533     blossom.insert(bottom);
 
   534     blossom.join(bottom, oldmiddle);
 
   535     blossom.join(top, oldmiddle);
 
   538   template <typename Graph>
 
   539   void MaxMatching<Graph>::augment(Node x,
 
   540 				   typename Graph::template NodeMap<Node>& ear,  
 
   541 				   UFE& blossom, UFE& tree) { 
 
   543     while ( v!=INVALID ) {
 
   551     typename UFE::ItemIt it;
 
   552     for (tree.first(it,blossom.find(x)); tree.valid(it); tree.next(it)) {   
 
   553       if ( position[it] == D ) {
 
   554 	typename UFE::ItemIt b_it;
 
   555 	for (blossom.first(b_it,it); blossom.valid(b_it); blossom.next(b_it)) {  
 
   556 	  position.set( b_it ,C);
 
   558 	blossom.eraseClass(it);
 
   559       } else position.set( it ,C);
 
   567 } //END OF NAMESPACE LEMON
 
   569 #endif //LEMON_MAX_MATCHING_H