4  *Performs Dijkstra's algorithm from Node s. 
 
     8  *dijkstra(graph_type& G, NodeIt s, EdgeMap& distance)
 
    16  *  The following function should be used after run() was already run.
 
    19  *T dist(NodeIt v) : returns the distance from s to v. 
 
    20  *   It is 0 if v is not reachable from s.
 
    23  *EdgeIt pred(NodeIt v)
 
    24  *   Returns the last Edge of a shortest s-v path. 
 
    25  *   Returns an invalid iterator if v=s or v is not
 
    29  *bool reach(NodeIt v) : true if v is reachable from s
 
    37  *Heap implementation is needed, because the priority queue of stl
 
    38  *does not have a mathod for key-decrease, so we had to use here a 
 
    41  *The implementation of infinity would be desirable, see after line 100. 
 
    50 #include <marci_graph_traits.hh>
 
    51 #include <marciMap.hh>
 
    61     template <typename graph_type, typename T>
 
    63       typedef typename graph_traits<graph_type>::NodeIt NodeIt;
 
    64       typedef typename graph_traits<graph_type>::EdgeIt EdgeIt;
 
    65       typedef typename graph_traits<graph_type>::EachNodeIt EachNodeIt;
 
    66       typedef typename graph_traits<graph_type>::InEdgeIt InEdgeIt;
 
    67       typedef typename graph_traits<graph_type>::OutEdgeIt OutEdgeIt;
 
    72       NodeMap<graph_type, EdgeIt> predecessor;
 
    73       NodeMap<graph_type, T> distance;
 
    74       EdgeMap<graph_type, T> length;
 
    75       NodeMap<graph_type, bool> reached;
 
    80       The distance of all the Nodes is 0.
 
    82     dijkstra(graph_type& _G, NodeIt _s, EdgeMap<graph_type, T>& _length) : 
 
    83       G(_G), s(_s), predecessor(G, 0), distance(G, 0), length(_length), reached(G, false) { }
 
    90 	NodeMap<graph_type, T> &d;
 
    91 	Node_dist_comp(NodeMap<graph_type, T> &_d) : d(_d) {} 
 
    93 	bool operator()(const NodeIt& u, const NodeIt& v) const 
 
    94 	{ return d.get(u) < d.get(v); }
 
   101 	NodeMap<graph_type, bool> scanned(G, false);
 
   102 	std::priority_queue<NodeIt, vector<NodeIt>, Node_dist_comp> 
 
   103 	  heap(( Node_dist_comp(distance) ));
 
   106 	reached.put(s, true);
 
   108 	while (!heap.empty()) {
 
   114 	  if (!scanned.get(v)) {
 
   116 	    for(OutEdgeIt e=G.template first<OutEdgeIt>(v); e.valid(); ++e) {
 
   119 	      if (!scanned.get(w)) {
 
   120 		if (!reached.get(w)) {
 
   122 		  distance.put(w, distance.get(v)-length.get(e));
 
   123 		  predecessor.put(w,e);
 
   124 		} else if (distance.get(v)-length.get(e)>distance.get(w)) {
 
   125 		  distance.put(w, distance.get(v)-length.get(e));
 
   126 		  predecessor.put(w,e);
 
   136 	  } // if (!scanned.get(v))
 
   140 	} // while (!heap.empty())
 
   150        *Returns the distance of the Node v.
 
   151        *It is 0 for the root and for the Nodes not
 
   152        *reachable form the root.
 
   155 	return -distance.get(v);
 
   161        *  Returns the last Edge of a shortest s-v path. 
 
   162        *  Returns an invalid iterator if v=root or v is not
 
   163        *  reachable from the root.
 
   165       EdgeIt pred(NodeIt v) {
 
   166 	if (v!=s) { return predecessor.get(v);}
 
   167 	else {return EdgeIt();}
 
   172       bool reach(NodeIt v) {
 
   173 	return reached.get(v);