2 #ifndef HUGO_MINCOSTFLOWS_H
 
     3 #define HUGO_MINCOSTFLOWS_H
 
     7 ///\brief An algorithm for finding a flow of value \c k (for small values of \c k) having minimal total cost 
 
    10 #include <hugo/dijkstra.h>
 
    11 #include <hugo/graph_wrapper.h>
 
    12 #include <hugo/maps.h>
 
    14 #include <hugo/for_each_macros.h>
 
    21   ///\brief Implementation of an algorithm for finding a flow of value \c k 
 
    22   ///(for small values of \c k) having minimal total cost between 2 nodes 
 
    25   /// The class \ref hugo::MinCostFlows "MinCostFlows" implements
 
    26   /// an algorithm for finding a flow of value \c k 
 
    27   ///(for small values of \c k) having minimal total cost  
 
    28   /// from a given source node to a given target node in an
 
    29   /// edge-weighted directed graph having nonnegative integer capacities.
 
    30   /// The range of the length (weight) function is nonnegative reals but 
 
    31   /// the range of capacity function is the set of nonnegative integers. 
 
    32   /// It is not a polinomial time algorithm for counting the minimum cost
 
    33   /// maximal flow, since it counts the minimum cost flow for every value 0..M
 
    34   /// where \c M is the value of the maximal flow.
 
    36   ///\author Attila Bernath
 
    37   template <typename Graph, typename LengthMap, typename CapacityMap>
 
    40     typedef typename LengthMap::ValueType Length;
 
    42     //Warning: this should be integer type
 
    43     typedef typename CapacityMap::ValueType Capacity;
 
    45     typedef typename Graph::Node Node;
 
    46     typedef typename Graph::NodeIt NodeIt;
 
    47     typedef typename Graph::Edge Edge;
 
    48     typedef typename Graph::OutEdgeIt OutEdgeIt;
 
    49     typedef typename Graph::template EdgeMap<int> EdgeIntMap;
 
    51     //    typedef ConstMap<Edge,int> ConstMap;
 
    53     typedef ResGraphWrapper<const Graph,int,CapacityMap,EdgeIntMap> ResGraphType;
 
    54     typedef typename ResGraphType::Edge ResGraphEdge;
 
    57       //typedef typename ResGraphType::template NodeMap<Length> NodeMap;
 
    58       typedef typename Graph::template NodeMap<Length> NodeMap;
 
    59       const ResGraphType& G;
 
    60       //      const EdgeIntMap& rev;
 
    64       typedef typename LengthMap::KeyType KeyType;
 
    65       typedef typename LengthMap::ValueType ValueType;
 
    67       ValueType operator[](typename ResGraphType::Edge e) const {     
 
    69 	  return  ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);   
 
    71 	  return -ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);   
 
    74       ModLengthMap(const ResGraphType& _G,
 
    75 		   const LengthMap &o,  const NodeMap &p) : 
 
    76 	G(_G), /*rev(_rev),*/ ol(o), pot(p){}; 
 
    84     const LengthMap& length;
 
    85     const CapacityMap& capacity;
 
    92     //To store the potentila (dual variables)
 
    93     typedef typename Graph::template NodeMap<Length> PotentialMap;
 
    94     PotentialMap potential;
 
   103     MinCostFlows(Graph& _G, LengthMap& _length, CapacityMap& _cap) : G(_G), 
 
   104       length(_length), capacity(_cap), flow(_G), potential(_G){ }
 
   107     ///Runs the algorithm.
 
   109     ///Runs the algorithm.
 
   110     ///Returns k if there are at least k edge-disjoint paths from s to t.
 
   111     ///Otherwise it returns the number of found edge-disjoint paths from s to t.
 
   112     ///\todo May be it does make sense to be able to start with a nonzero 
 
   113     /// feasible primal-dual solution pair as well.
 
   114     int run(Node s, Node t, int k) {
 
   116       //Resetting variables from previous runs
 
   119       FOR_EACH_LOC(typename Graph::EdgeIt, e, G){
 
   123       //Initialize the potential to zero
 
   124       FOR_EACH_LOC(typename Graph::NodeIt, n, G){
 
   130       //We need a residual graph
 
   131       ResGraphType res_graph(G, capacity, flow);
 
   134       ModLengthMap mod_length(res_graph, length, potential);
 
   136       Dijkstra<ResGraphType, ModLengthMap> dijkstra(res_graph, mod_length);
 
   141 	if (!dijkstra.reached(t)){
 
   142 	  //There are no k paths from s to t
 
   146 	//We have to change the potential
 
   147 	FOR_EACH_LOC(typename ResGraphType::NodeIt, n, res_graph){
 
   148 	  potential[n] += dijkstra.distMap()[n];
 
   152 	//Augmenting on the sortest path
 
   156 	  e = dijkstra.pred(n);
 
   157 	  n = dijkstra.predNode(n);
 
   158 	  res_graph.augment(e,1);
 
   159 	  //Let's update the total length
 
   160 	  if (res_graph.forward(e))
 
   161 	    total_length += length[e];
 
   163 	    total_length -= length[e];	    
 
   176     ///This function gives back the total length of the found paths.
 
   177     ///Assumes that \c run() has been run and nothing changed since then.
 
   178     Length totalLength(){
 
   182     ///Returns a const reference to the EdgeMap \c flow. \pre \ref run() must
 
   183     ///be called before using this function.
 
   184     const EdgeIntMap &getFlow() const { return flow;}
 
   186   ///Returns a const reference to the NodeMap \c potential (the dual solution).
 
   187     /// \pre \ref run() must be called before using this function.
 
   188     const PotentialMap &getPotential() const { return potential;}
 
   190     ///This function checks, whether the given solution is optimal
 
   191     ///Running after a \c run() should return with true
 
   192     ///In this "state of the art" this only check optimality, doesn't bother with feasibility
 
   194     ///\todo Is this OK here?
 
   195     bool checkComplementarySlackness(){
 
   198       FOR_EACH_LOC(typename Graph::EdgeIt, e, G){
 
   200 	mod_pot = length[e]-potential[G.head(e)]+potential[G.tail(e)];
 
   202 	//	std::cout << fl_e << std::endl;
 
   203 	if (0<fl_e && fl_e<capacity[e]){
 
   208 	  if (mod_pot > 0 && fl_e != 0)
 
   210 	  if (mod_pot < 0 && fl_e != capacity[e])
 
   218   }; //class MinCostFlows
 
   224 #endif //HUGO_MINCOSTFLOWS_H