Removing from work.
     2 #ifndef LEMON_DIJKSTRA_H
 
     3 #define LEMON_DIJKSTRA_H
 
     7 ///\brief Dijkstra algorithm.
 
     9 #include <lemon/bin_heap.h>
 
    10 #include <lemon/invalid.h>
 
    17   ///%Dijkstra algorithm class.
 
    19   ///This class provides an efficient implementation of %Dijkstra algorithm.
 
    20   ///The edge lengths are passed to the algorithm using a
 
    21   ///\ref ReadMap "readable map",
 
    22   ///so it is easy to change it to any kind of length.
 
    24   ///The type of the length is determined by the \c Value of the length map.
 
    26   ///It is also possible to change the underlying priority heap.
 
    28   ///\param GR The graph type the algorithm runs on.
 
    29   ///\param LM This read-only
 
    32   ///lengths of the edges. It is read once for each edge, so the map
 
    33   ///may involve in relatively time consuming process to compute the edge
 
    34   ///length if it is necessary. The default map type is
 
    35   ///\ref Graph::EdgeMap "Graph::EdgeMap<int>"
 
    36   ///\param Heap The heap type used by the %Dijkstra
 
    37   ///algorithm. The default
 
    38   ///is using \ref BinHeap "binary heap".
 
    40   ///\author Jacint Szabo and Alpar Juttner
 
    41   ///\todo We need a typedef-names should be standardized. (-:
 
    44   template <typename GR,
 
    48   template <typename GR,
 
    49 	    typename LM=typename GR::template EdgeMap<int>,
 
    50 	    template <class,class,class,class> class Heap = BinHeap >
 
    54     ///The type of the underlying graph.
 
    56     typedef typename Graph::Node Node;
 
    57     typedef typename Graph::NodeIt NodeIt;
 
    58     typedef typename Graph::Edge Edge;
 
    59     typedef typename Graph::OutEdgeIt OutEdgeIt;
 
    61     ///The type of the length of the edges.
 
    62     typedef typename LM::Value Value;
 
    63     ///The type of the map that stores the edge lengths.
 
    65     ///\brief The type of the map that stores the last
 
    66     ///edges of the shortest paths.
 
    67     typedef typename Graph::template NodeMap<Edge> PredMap;
 
    68     ///\brief The type of the map that stores the last but one
 
    69     ///nodes of the shortest paths.
 
    70     typedef typename Graph::template NodeMap<Node> PredNodeMap;
 
    71     ///The type of the map that stores the dists of the nodes.
 
    72     typedef typename Graph::template NodeMap<Value> DistMap;
 
    79     bool local_predecessor;
 
    80     PredNodeMap *pred_node;
 
    87     ///\todo Error if \c G or are \c NULL. What about \c length?
 
    88     ///\todo Better memory allocation (instead of new).
 
    92 // 	local_length = true;
 
    93 // 	length = new LM(G);
 
    96 	local_predecessor = true;
 
    97 	predecessor = new PredMap(*G);
 
   100 	local_pred_node = true;
 
   101 	pred_node = new PredNodeMap(*G);
 
   104 	local_distance = true;
 
   105 	distance = new DistMap(*G);
 
   111     Dijkstra(const Graph& _G, const LM& _length) :
 
   112       G(&_G), length(&_length),
 
   113       predecessor(NULL), pred_node(NULL), distance(NULL),
 
   114       local_predecessor(false), local_pred_node(false), local_distance(false)
 
   119       //      if(local_length) delete length;
 
   120       if(local_predecessor) delete predecessor;
 
   121       if(local_pred_node) delete pred_node;
 
   122       if(local_distance) delete distance;
 
   125     ///Sets the graph the algorithm will run on.
 
   127     ///Sets the graph the algorithm will run on.
 
   128     ///\return <tt> (*this) </tt>
 
   129     Dijkstra &setGraph(const Graph &_G) 
 
   134     ///Sets the length map.
 
   136     ///Sets the length map.
 
   137     ///\return <tt> (*this) </tt>
 
   138     Dijkstra &setLengthMap(const LM &m) 
 
   140 //       if(local_length) {
 
   142 // 	local_length=false;
 
   148     ///Sets the map storing the predecessor edges.
 
   150     ///Sets the map storing the predecessor edges.
 
   151     ///If you don't use this function before calling \ref run(),
 
   152     ///it will allocate one. The destuctor deallocates this
 
   153     ///automatically allocated map, of course.
 
   154     ///\return <tt> (*this) </tt>
 
   155     Dijkstra &setPredMap(PredMap &m) 
 
   157       if(local_predecessor) {
 
   159 	local_predecessor=false;
 
   165     ///Sets the map storing the predecessor nodes.
 
   167     ///Sets the map storing the predecessor nodes.
 
   168     ///If you don't use this function before calling \ref run(),
 
   169     ///it will allocate one. The destuctor deallocates this
 
   170     ///automatically allocated map, of course.
 
   171     ///\return <tt> (*this) </tt>
 
   172     Dijkstra &setPredNodeMap(PredNodeMap &m) 
 
   174       if(local_pred_node) {
 
   176 	local_pred_node=false;
 
   182     ///Sets the map storing the distances calculated by the algorithm.
 
   184     ///Sets the map storing the distances calculated by the algorithm.
 
   185     ///If you don't use this function before calling \ref run(),
 
   186     ///it will allocate one. The destuctor deallocates this
 
   187     ///automatically allocated map, of course.
 
   188     ///\return <tt> (*this) </tt>
 
   189     Dijkstra &setDistMap(DistMap &m) 
 
   193 	local_distance=false;
 
   199   ///Runs %Dijkstra algorithm from node \c s.
 
   201   ///This method runs the %Dijkstra algorithm from a root node \c s
 
   204   ///shortest path to each node. The algorithm computes
 
   205   ///- The shortest path tree.
 
   206   ///- The distance of each node from the root.
 
   212       for ( NodeIt u(*G) ; G->valid(u) ; G->next(u) ) {
 
   213 	predecessor->set(u,INVALID);
 
   214 	pred_node->set(u,INVALID);
 
   217       typename GR::template NodeMap<int> heap_map(*G,-1);
 
   219       typedef Heap<Node, Value, typename GR::template NodeMap<int>,
 
   223       HeapType heap(heap_map);
 
   227       while ( !heap.empty() ) {
 
   230 	Value oldvalue=heap[v];
 
   232 	distance->set(v, oldvalue);
 
   235 	for(OutEdgeIt e(*G,v); G->valid(e); G->next(e)) {
 
   238 	  switch(heap.state(w)) {
 
   239 	  case HeapType::PRE_HEAP:
 
   240 	    heap.push(w,oldvalue+(*length)[e]); 
 
   241 	    predecessor->set(w,e);
 
   244 	  case HeapType::IN_HEAP:
 
   245 	    if ( oldvalue+(*length)[e] < heap[w] ) {
 
   246 	      heap.decrease(w, oldvalue+(*length)[e]); 
 
   247 	      predecessor->set(w,e);
 
   251 	  case HeapType::POST_HEAP:
 
   258     ///The distance of a node from the root.
 
   260     ///Returns the distance of a node from the root.
 
   261     ///\pre \ref run() must be called before using this function.
 
   262     ///\warning If node \c v in unreachable from the root the return value
 
   263     ///of this funcion is undefined.
 
   264     Value dist(Node v) const { return (*distance)[v]; }
 
   266     ///Returns the 'previous edge' of the shortest path tree.
 
   268     ///For a node \c v it returns the 'previous edge' of the shortest path tree,
 
   269     ///i.e. it returns the last edge from a shortest path from the root to \c
 
   270     ///v. It is \ref INVALID
 
   271     ///if \c v is unreachable from the root or if \c v=s. The
 
   272     ///shortest path tree used here is equal to the shortest path tree used in
 
   273     ///\ref predNode(Node v).  \pre \ref run() must be called before using
 
   275     Edge pred(Node v) const { return (*predecessor)[v]; }
 
   277     ///Returns the 'previous node' of the shortest path tree.
 
   279     ///For a node \c v it returns the 'previous node' of the shortest path tree,
 
   280     ///i.e. it returns the last but one node from a shortest path from the
 
   281     ///root to \c /v. It is INVALID if \c v is unreachable from the root or if
 
   282     ///\c v=s. The shortest path tree used here is equal to the shortest path
 
   283     ///tree used in \ref pred(Node v).  \pre \ref run() must be called before
 
   284     ///using this function.
 
   285     Node predNode(Node v) const { return (*pred_node)[v]; }
 
   287     ///Returns a reference to the NodeMap of distances.
 
   289     ///Returns a reference to the NodeMap of distances. \pre \ref run() must
 
   290     ///be called before using this function.
 
   291     const DistMap &distMap() const { return *distance;}
 
   293     ///Returns a reference to the shortest path tree map.
 
   295     ///Returns a reference to the NodeMap of the edges of the
 
   296     ///shortest path tree.
 
   297     ///\pre \ref run() must be called before using this function.
 
   298     const PredMap &predMap() const { return *predecessor;}
 
   300     ///Returns a reference to the map of nodes of shortest paths.
 
   302     ///Returns a reference to the NodeMap of the last but one nodes of the
 
   303     ///shortest path tree.
 
   304     ///\pre \ref run() must be called before using this function.
 
   305     const PredNodeMap &predNodeMap() const { return *pred_node;}
 
   307     ///Checks if a node is reachable from the root.
 
   309     ///Returns \c true if \c v is reachable from the root.
 
   310     ///\warning the root node is reported to be unreached!
 
   311     ///\todo Is this what we want?
 
   312     ///\pre \ref run() must be called before using this function.
 
   314     bool reached(Node v) { return G->valid((*predecessor)[v]); }
 
   319   // **********************************************************************
 
   321   // **********************************************************************
 
   325 } //END OF NAMESPACE LEMON