3  * This file is a part of LEMON, a generic C++ optimization library
 
     5  * Copyright (C) 2003-2006
 
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
 
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
 
     9  * Permission to use, modify and distribute this software is granted
 
    10  * provided that this copyright notice appears in all copies. For
 
    11  * precise terms see the accompanying LICENSE file.
 
    13  * This software is provided "AS IS" with no warranty of any kind,
 
    14  * express or implied, and with no claim as to its suitability for any
 
    19 /// \ingroup graph_concepts
 
    21 /// \brief Undirected bipartite graphs and components of.
 
    24 #ifndef LEMON_CONCEPT_BPUGRAPH_H
 
    25 #define LEMON_CONCEPT_BPUGRAPH_H
 
    27 #include <lemon/concept/graph_component.h>
 
    29 #include <lemon/concept/graph.h>
 
    30 #include <lemon/concept/ugraph.h>
 
    32 #include <lemon/bits/utility.h>
 
    37     /// \addtogroup graph_concepts
 
    41     /// \brief Class describing the concept of Bipartite Undirected Graphs.
 
    43     /// This class describes the common interface of all 
 
    44     /// Undirected Bipartite Graphs.
 
    46     /// As all concept describing classes it provides only interface
 
    47     /// without any sensible implementation. So any algorithm for
 
    48     /// bipartite undirected graph should compile with this class, but it 
 
    49     /// will not run properly, of course.
 
    51     /// In LEMON bipartite undirected graphs also fulfill the concept of 
 
    52     /// the undirected graphs (\ref lemon::concept::UGraph "UGraph Concept"). 
 
    54     /// You can assume that all undirected bipartite graph can be handled
 
    55     /// as an undirected graph and consequently as a static graph.
 
    57     /// The bipartite graph stores two types of nodes which are named
 
    58     /// ANode and BNode. The graph type contains two types ANode and BNode
 
    59     /// which are inherited from Node type. Moreover they have
 
    60     /// constructor which converts Node to either ANode or BNode when it is
 
    61     /// possible. Therefor everywhere the Node type can be used instead of
 
    62     /// ANode and BNode. So the usage of the ANode and BNode is suggested.  
 
    64     /// The iteration on the partition can be done with the ANodeIt and 
 
    65     /// BNodeIt classes. The node map can be used to map values to the nodes
 
    66     /// and similarly we can use to map values for just the ANodes and
 
    67     /// BNodes the ANodeMap and BNodeMap template classes.
 
    71       /// \todo undocumented
 
    73       typedef True UndirectedTag;
 
    75       /// \brief The base type of node iterators, 
 
    76       /// or in other words, the trivial node iterator.
 
    78       /// This is the base type of each node iterator,
 
    79       /// thus each kind of node iterator converts to this.
 
    80       /// More precisely each kind of node iterator should be inherited 
 
    81       /// from the trivial node iterator. The Node class represents
 
    82       /// both of two types of nodes. 
 
    85         /// Default constructor
 
    87         /// @warning The default constructor sets the iterator
 
    88         /// to an undefined value.
 
    96         /// Invalid constructor \& conversion.
 
    98         /// This constructor initializes the iterator to be invalid.
 
    99         /// \sa Invalid for more details.
 
   101         /// Equality operator
 
   103         /// Two iterators are equal if and only if they point to the
 
   104         /// same object or both are invalid.
 
   105         bool operator==(Node) const { return true; }
 
   107         /// Inequality operator
 
   109         /// \sa operator==(Node n)
 
   111         bool operator!=(Node) const { return true; }
 
   113 	/// Artificial ordering operator.
 
   115 	/// To allow the use of graph descriptors as key type in std::map or
 
   116 	/// similar associative container we require this.
 
   118 	/// \note This operator only have to define some strict ordering of
 
   119 	/// the items; this order has nothing to do with the iteration
 
   120 	/// ordering of the items.
 
   122 	/// \bug This is a technical requirement. Do we really need this?
 
   123 	bool operator<(Node) const { return false; }
 
   127       /// \brief The base type of anode iterators, 
 
   128       /// or in other words, the trivial anode iterator.
 
   130       /// This is the base type of each anode iterator,
 
   131       /// thus each kind of anode iterator converts to this.
 
   132       /// More precisely each kind of node iterator should be inherited 
 
   133       /// from the trivial anode iterator. The ANode class should be used
 
   134       /// only in special cases. Usually the Node type should be used insted
 
   138         /// Default constructor
 
   140         /// @warning The default constructor sets the iterator
 
   141         /// to an undefined value.
 
   143         /// Copy constructor.
 
   145         /// Copy constructor.
 
   147         ANode(const ANode&) { }
 
   149         /// Construct the same node as ANode.
 
   151         /// Construct the same node as ANode. It may throws assertion
 
   152         /// when the given node is from the BNode set.
 
   153         ANode(const Node&) { }
 
   155         /// Invalid constructor \& conversion.
 
   157         /// This constructor initializes the iterator to be invalid.
 
   158         /// \sa Invalid for more details.
 
   160         /// Equality operator
 
   162         /// Two iterators are equal if and only if they point to the
 
   163         /// same object or both are invalid.
 
   164         bool operator==(ANode) const { return true; }
 
   166         /// Inequality operator
 
   168         /// \sa operator==(ANode n)
 
   170         bool operator!=(ANode) const { return true; }
 
   172 	/// Artificial ordering operator.
 
   174 	/// To allow the use of graph descriptors as key type in std::map or
 
   175 	/// similar associative container we require this.
 
   177 	/// \note This operator only have to define some strict ordering of
 
   178 	/// the items; this order has nothing to do with the iteration
 
   179 	/// ordering of the items.
 
   180 	bool operator<(ANode) const { return false; }
 
   184       /// \brief The base type of bnode iterators, 
 
   185       /// or in other words, the trivial bnode iterator.
 
   187       /// This is the base type of each anode iterator,
 
   188       /// thus each kind of anode iterator converts to this.
 
   189       /// More precisely each kind of node iterator should be inherited 
 
   190       /// from the trivial anode iterator. The BNode class should be used
 
   191       /// only in special cases. Usually the Node type should be used insted
 
   195         /// Default constructor
 
   197         /// @warning The default constructor sets the iterator
 
   198         /// to an undefined value.
 
   200         /// Copy constructor.
 
   202         /// Copy constructor.
 
   204         BNode(const BNode&) { }
 
   206         /// Construct the same node as BNode.
 
   208         /// Construct the same node as BNode. It may throws assertion
 
   209         /// when the given node is from the ANode set.
 
   210         BNode(const Node&) { }
 
   212         /// Invalid constructor \& conversion.
 
   214         /// This constructor initializes the iterator to be invalid.
 
   215         /// \sa Invalid for more details.
 
   217         /// Equality operator
 
   219         /// Two iterators are equal if and only if they point to the
 
   220         /// same object or both are invalid.
 
   221         bool operator==(BNode) const { return true; }
 
   223         /// Inequality operator
 
   225         /// \sa operator==(BNode n)
 
   227         bool operator!=(BNode) const { return true; }
 
   229 	/// Artificial ordering operator.
 
   231 	/// To allow the use of graph descriptors as key type in std::map or
 
   232 	/// similar associative container we require this.
 
   234 	/// \note This operator only have to define some strict ordering of
 
   235 	/// the items; this order has nothing to do with the iteration
 
   236 	/// ordering of the items.
 
   237 	bool operator<(BNode) const { return false; }
 
   241       /// This iterator goes through each node.
 
   243       /// This iterator goes through each node.
 
   244       /// Its usage is quite simple, for example you can count the number
 
   245       /// of nodes in graph \c g of type \c Graph like this:
 
   248       /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count;
 
   250       class NodeIt : public Node {
 
   252         /// Default constructor
 
   254         /// @warning The default constructor sets the iterator
 
   255         /// to an undefined value.
 
   257         /// Copy constructor.
 
   259         /// Copy constructor.
 
   261         NodeIt(const NodeIt& n) : Node(n) { }
 
   262         /// Invalid constructor \& conversion.
 
   264         /// Initialize the iterator to be invalid.
 
   265         /// \sa Invalid for more details.
 
   267         /// Sets the iterator to the first node.
 
   269         /// Sets the iterator to the first node of \c g.
 
   271         NodeIt(const BpUGraph&) { }
 
   272         /// Node -> NodeIt conversion.
 
   274         /// Sets the iterator to the node of \c the graph pointed by 
 
   275 	/// the trivial iterator.
 
   276         /// This feature necessitates that each time we 
 
   277         /// iterate the edge-set, the iteration order is the same.
 
   278         NodeIt(const BpUGraph&, const Node&) { }
 
   281         /// Assign the iterator to the next node.
 
   283         NodeIt& operator++() { return *this; }
 
   286       /// This iterator goes through each ANode.
 
   288       /// This iterator goes through each ANode.
 
   289       /// Its usage is quite simple, for example you can count the number
 
   290       /// of nodes in graph \c g of type \c Graph like this:
 
   293       /// for (Graph::ANodeIt n(g); n!=INVALID; ++n) ++count;
 
   295       class ANodeIt : public ANode {
 
   297         /// Default constructor
 
   299         /// @warning The default constructor sets the iterator
 
   300         /// to an undefined value.
 
   302         /// Copy constructor.
 
   304         /// Copy constructor.
 
   306         ANodeIt(const ANodeIt& n) : Node(n) { }
 
   307         /// Invalid constructor \& conversion.
 
   309         /// Initialize the iterator to be invalid.
 
   310         /// \sa Invalid for more details.
 
   312         /// Sets the iterator to the first node.
 
   314         /// Sets the iterator to the first node of \c g.
 
   316         ANodeIt(const BpUGraph&) { }
 
   317         /// Node -> ANodeIt conversion.
 
   319         /// Sets the iterator to the node of \c the graph pointed by 
 
   320 	/// the trivial iterator.
 
   321         /// This feature necessitates that each time we 
 
   322         /// iterate the edge-set, the iteration order is the same.
 
   323         ANodeIt(const BpUGraph&, const Node&) { }
 
   326         /// Assign the iterator to the next node.
 
   328         ANodeIt& operator++() { return *this; }
 
   331       /// This iterator goes through each BNode.
 
   333       /// This iterator goes through each BNode.
 
   334       /// Its usage is quite simple, for example you can count the number
 
   335       /// of nodes in graph \c g of type \c Graph like this:
 
   338       /// for (Graph::BNodeIt n(g); n!=INVALID; ++n) ++count;
 
   340       class BNodeIt : public BNode {
 
   342         /// Default constructor
 
   344         /// @warning The default constructor sets the iterator
 
   345         /// to an undefined value.
 
   347         /// Copy constructor.
 
   349         /// Copy constructor.
 
   351         BNodeIt(const BNodeIt& n) : Node(n) { }
 
   352         /// Invalid constructor \& conversion.
 
   354         /// Initialize the iterator to be invalid.
 
   355         /// \sa Invalid for more details.
 
   357         /// Sets the iterator to the first node.
 
   359         /// Sets the iterator to the first node of \c g.
 
   361         BNodeIt(const BpUGraph&) { }
 
   362         /// Node -> BNodeIt conversion.
 
   364         /// Sets the iterator to the node of \c the graph pointed by 
 
   365 	/// the trivial iterator.
 
   366         /// This feature necessitates that each time we 
 
   367         /// iterate the edge-set, the iteration order is the same.
 
   368         BNodeIt(const BpUGraph&, const Node&) { }
 
   371         /// Assign the iterator to the next node.
 
   373         BNodeIt& operator++() { return *this; }
 
   377       /// The base type of the undirected edge iterators.
 
   379       /// The base type of the undirected edge iterators.
 
   383         /// Default constructor
 
   385         /// @warning The default constructor sets the iterator
 
   386         /// to an undefined value.
 
   388         /// Copy constructor.
 
   390         /// Copy constructor.
 
   392         UEdge(const UEdge&) { }
 
   393         /// Initialize the iterator to be invalid.
 
   395         /// Initialize the iterator to be invalid.
 
   398         /// Equality operator
 
   400         /// Two iterators are equal if and only if they point to the
 
   401         /// same object or both are invalid.
 
   402         bool operator==(UEdge) const { return true; }
 
   403         /// Inequality operator
 
   405         /// \sa operator==(UEdge n)
 
   407         bool operator!=(UEdge) const { return true; }
 
   409 	/// Artificial ordering operator.
 
   411 	/// To allow the use of graph descriptors as key type in std::map or
 
   412 	/// similar associative container we require this.
 
   414 	/// \note This operator only have to define some strict ordering of
 
   415 	/// the items; this order has nothing to do with the iteration
 
   416 	/// ordering of the items.
 
   418 	/// \bug This is a technical requirement. Do we really need this?
 
   419 	bool operator<(UEdge) const { return false; }
 
   422       /// This iterator goes through each undirected edge.
 
   424       /// This iterator goes through each undirected edge of a graph.
 
   425       /// Its usage is quite simple, for example you can count the number
 
   426       /// of undirected edges in a graph \c g of type \c Graph as follows:
 
   429       /// for(Graph::UEdgeIt e(g); e!=INVALID; ++e) ++count;
 
   431       class UEdgeIt : public UEdge {
 
   433         /// Default constructor
 
   435         /// @warning The default constructor sets the iterator
 
   436         /// to an undefined value.
 
   438         /// Copy constructor.
 
   440         /// Copy constructor.
 
   442         UEdgeIt(const UEdgeIt& e) : UEdge(e) { }
 
   443         /// Initialize the iterator to be invalid.
 
   445         /// Initialize the iterator to be invalid.
 
   448         /// This constructor sets the iterator to the first undirected edge.
 
   450         /// This constructor sets the iterator to the first undirected edge.
 
   451         UEdgeIt(const BpUGraph&) { }
 
   452         /// UEdge -> UEdgeIt conversion
 
   454         /// Sets the iterator to the value of the trivial iterator.
 
   455         /// This feature necessitates that each time we
 
   456         /// iterate the undirected edge-set, the iteration order is the 
 
   458         UEdgeIt(const BpUGraph&, const UEdge&) { } 
 
   459         /// Next undirected edge
 
   461         /// Assign the iterator to the next undirected edge.
 
   462         UEdgeIt& operator++() { return *this; }
 
   465       /// \brief This iterator goes trough the incident undirected 
 
   468       /// This iterator goes trough the incident undirected edges
 
   469       /// of a certain node
 
   471       /// Its usage is quite simple, for example you can compute the
 
   472       /// degree (i.e. count the number
 
   473       /// of incident edges of a node \c n
 
   474       /// in graph \c g of type \c Graph as follows.
 
   477       /// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
 
   479       class IncEdgeIt : public UEdge {
 
   481         /// Default constructor
 
   483         /// @warning The default constructor sets the iterator
 
   484         /// to an undefined value.
 
   486         /// Copy constructor.
 
   488         /// Copy constructor.
 
   490         IncEdgeIt(const IncEdgeIt& e) : UEdge(e) { }
 
   491         /// Initialize the iterator to be invalid.
 
   493         /// Initialize the iterator to be invalid.
 
   495         IncEdgeIt(Invalid) { }
 
   496         /// This constructor sets the iterator to first incident edge.
 
   498         /// This constructor set the iterator to the first incident edge of
 
   500         IncEdgeIt(const BpUGraph&, const Node&) { }
 
   501         /// UEdge -> IncEdgeIt conversion
 
   503         /// Sets the iterator to the value of the trivial iterator \c e.
 
   504         /// This feature necessitates that each time we 
 
   505         /// iterate the edge-set, the iteration order is the same.
 
   506         IncEdgeIt(const BpUGraph&, const UEdge&) { }
 
   507         /// Next incident edge
 
   509         /// Assign the iterator to the next incident edge
 
   510 	/// of the corresponding node.
 
   511         IncEdgeIt& operator++() { return *this; }
 
   514       /// The directed edge type.
 
   516       /// The directed edge type. It can be converted to the
 
   518       class Edge : public UEdge {
 
   520         /// Default constructor
 
   522         /// @warning The default constructor sets the iterator
 
   523         /// to an undefined value.
 
   525         /// Copy constructor.
 
   527         /// Copy constructor.
 
   529         Edge(const Edge& e) : UEdge(e) { }
 
   530         /// Initialize the iterator to be invalid.
 
   532         /// Initialize the iterator to be invalid.
 
   535         /// Equality operator
 
   537         /// Two iterators are equal if and only if they point to the
 
   538         /// same object or both are invalid.
 
   539         bool operator==(Edge) const { return true; }
 
   540         /// Inequality operator
 
   542         /// \sa operator==(Edge n)
 
   544         bool operator!=(Edge) const { return true; }
 
   546 	/// Artificial ordering operator.
 
   548 	/// To allow the use of graph descriptors as key type in std::map or
 
   549 	/// similar associative container we require this.
 
   551 	/// \note This operator only have to define some strict ordering of
 
   552 	/// the items; this order has nothing to do with the iteration
 
   553 	/// ordering of the items.
 
   555 	/// \bug This is a technical requirement. Do we really need this?
 
   556 	bool operator<(Edge) const { return false; }
 
   559       /// This iterator goes through each directed edge.
 
   561       /// This iterator goes through each edge of a graph.
 
   562       /// Its usage is quite simple, for example you can count the number
 
   563       /// of edges in a graph \c g of type \c Graph as follows:
 
   566       /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count;
 
   568       class EdgeIt : public Edge {
 
   570         /// Default constructor
 
   572         /// @warning The default constructor sets the iterator
 
   573         /// to an undefined value.
 
   575         /// Copy constructor.
 
   577         /// Copy constructor.
 
   579         EdgeIt(const EdgeIt& e) : Edge(e) { }
 
   580         /// Initialize the iterator to be invalid.
 
   582         /// Initialize the iterator to be invalid.
 
   585         /// This constructor sets the iterator to the first edge.
 
   587         /// This constructor sets the iterator to the first edge of \c g.
 
   588         ///@param g the graph
 
   589         EdgeIt(const BpUGraph &g) { ignore_unused_variable_warning(g); }
 
   590         /// Edge -> EdgeIt conversion
 
   592         /// Sets the iterator to the value of the trivial iterator \c e.
 
   593         /// This feature necessitates that each time we 
 
   594         /// iterate the edge-set, the iteration order is the same.
 
   595         EdgeIt(const BpUGraph&, const Edge&) { } 
 
   598         /// Assign the iterator to the next edge.
 
   599         EdgeIt& operator++() { return *this; }
 
   602       /// This iterator goes trough the outgoing directed edges of a node.
 
   604       /// This iterator goes trough the \e outgoing edges of a certain node
 
   606       /// Its usage is quite simple, for example you can count the number
 
   607       /// of outgoing edges of a node \c n
 
   608       /// in graph \c g of type \c Graph as follows.
 
   611       /// for (Graph::OutEdgeIt e(g, n); e!=INVALID; ++e) ++count;
 
   614       class OutEdgeIt : public Edge {
 
   616         /// Default constructor
 
   618         /// @warning The default constructor sets the iterator
 
   619         /// to an undefined value.
 
   621         /// Copy constructor.
 
   623         /// Copy constructor.
 
   625         OutEdgeIt(const OutEdgeIt& e) : Edge(e) { }
 
   626         /// Initialize the iterator to be invalid.
 
   628         /// Initialize the iterator to be invalid.
 
   630         OutEdgeIt(Invalid) { }
 
   631         /// This constructor sets the iterator to the first outgoing edge.
 
   633         /// This constructor sets the iterator to the first outgoing edge of
 
   636         ///@param g the graph
 
   637         OutEdgeIt(const BpUGraph& n, const Node& g) {
 
   638 	  ignore_unused_variable_warning(n);
 
   639 	  ignore_unused_variable_warning(g);
 
   641         /// Edge -> OutEdgeIt conversion
 
   643         /// Sets the iterator to the value of the trivial iterator.
 
   644 	/// This feature necessitates that each time we 
 
   645         /// iterate the edge-set, the iteration order is the same.
 
   646         OutEdgeIt(const BpUGraph&, const Edge&) { }
 
   647         ///Next outgoing edge
 
   649         /// Assign the iterator to the next 
 
   650         /// outgoing edge of the corresponding node.
 
   651         OutEdgeIt& operator++() { return *this; }
 
   654       /// This iterator goes trough the incoming directed edges of a node.
 
   656       /// This iterator goes trough the \e incoming edges of a certain node
 
   658       /// Its usage is quite simple, for example you can count the number
 
   659       /// of outgoing edges of a node \c n
 
   660       /// in graph \c g of type \c Graph as follows.
 
   663       /// for(Graph::InEdgeIt e(g, n); e!=INVALID; ++e) ++count;
 
   666       class InEdgeIt : public Edge {
 
   668         /// Default constructor
 
   670         /// @warning The default constructor sets the iterator
 
   671         /// to an undefined value.
 
   673         /// Copy constructor.
 
   675         /// Copy constructor.
 
   677         InEdgeIt(const InEdgeIt& e) : Edge(e) { }
 
   678         /// Initialize the iterator to be invalid.
 
   680         /// Initialize the iterator to be invalid.
 
   682         InEdgeIt(Invalid) { }
 
   683         /// This constructor sets the iterator to first incoming edge.
 
   685         /// This constructor set the iterator to the first incoming edge of
 
   688         ///@param g the graph
 
   689         InEdgeIt(const BpUGraph& g, const Node& n) { 
 
   690 	  ignore_unused_variable_warning(n);
 
   691 	  ignore_unused_variable_warning(g);
 
   693         /// Edge -> InEdgeIt conversion
 
   695         /// Sets the iterator to the value of the trivial iterator \c e.
 
   696         /// This feature necessitates that each time we 
 
   697         /// iterate the edge-set, the iteration order is the same.
 
   698         InEdgeIt(const BpUGraph&, const Edge&) { }
 
   699         /// Next incoming edge
 
   701         /// Assign the iterator to the next inedge of the corresponding node.
 
   703         InEdgeIt& operator++() { return *this; }
 
   706       /// \brief Read write map of the nodes to type \c T.
 
   708       /// ReadWrite map of the nodes to type \c T.
 
   710       /// \warning Making maps that can handle bool type (NodeMap<bool>)
 
   711       /// needs some extra attention!
 
   712       /// \todo Wrong documentation
 
   714       class NodeMap : public ReadWriteMap< Node, T >
 
   719         NodeMap(const BpUGraph&) { }
 
   721         NodeMap(const BpUGraph&, T) { }
 
   724         NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
 
   725         ///Assignment operator
 
   726         NodeMap& operator=(const NodeMap&) { return *this; }
 
   727         // \todo fix this concept
 
   730       /// \brief Read write map of the ANodes to type \c T.
 
   732       /// ReadWrite map of the ANodes to type \c T.
 
   734       /// \warning Making maps that can handle bool type (NodeMap<bool>)
 
   735       /// needs some extra attention!
 
   736       /// \todo Wrong documentation
 
   738       class ANodeMap : public ReadWriteMap< Node, T >
 
   743         ANodeMap(const BpUGraph&) { }
 
   745         ANodeMap(const BpUGraph&, T) { }
 
   748         ANodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
 
   749         ///Assignment operator
 
   750         ANodeMap& operator=(const NodeMap&) { return *this; }
 
   751         // \todo fix this concept
 
   754       /// \brief Read write map of the BNodes to type \c T.
 
   756       /// ReadWrite map of the BNodes to type \c T.
 
   758       /// \warning Making maps that can handle bool type (NodeMap<bool>)
 
   759       /// needs some extra attention!
 
   760       /// \todo Wrong documentation
 
   762       class BNodeMap : public ReadWriteMap< Node, T >
 
   767         BNodeMap(const BpUGraph&) { }
 
   769         BNodeMap(const BpUGraph&, T) { }
 
   772         BNodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
 
   773         ///Assignment operator
 
   774         BNodeMap& operator=(const NodeMap&) { return *this; }
 
   775         // \todo fix this concept
 
   778       /// \brief Read write map of the directed edges to type \c T.
 
   780       /// Reference map of the directed edges to type \c T.
 
   782       /// \warning Making maps that can handle bool type (EdgeMap<bool>)
 
   783       /// needs some extra attention!
 
   784       /// \todo Wrong documentation
 
   786       class EdgeMap : public ReadWriteMap<Edge,T>
 
   791         EdgeMap(const BpUGraph&) { }
 
   793         EdgeMap(const BpUGraph&, T) { }
 
   795         EdgeMap(const EdgeMap& em) : ReadWriteMap<Edge,T>(em) { }
 
   796         ///Assignment operator
 
   797         EdgeMap& operator=(const EdgeMap&) { return *this; }
 
   798         // \todo fix this concept    
 
   801       /// Read write map of the undirected edges to type \c T.
 
   803       /// Reference map of the edges to type \c T.
 
   805       /// \warning Making maps that can handle bool type (UEdgeMap<bool>)
 
   806       /// needs some extra attention!
 
   807       /// \todo Wrong documentation
 
   809       class UEdgeMap : public ReadWriteMap<UEdge,T>
 
   814         UEdgeMap(const BpUGraph&) { }
 
   816         UEdgeMap(const BpUGraph&, T) { }
 
   818         UEdgeMap(const UEdgeMap& em) : ReadWriteMap<UEdge,T>(em) {}
 
   819         ///Assignment operator
 
   820         UEdgeMap &operator=(const UEdgeMap&) { return *this; }
 
   821         // \todo fix this concept    
 
   824       /// \brief Direct the given undirected edge.
 
   826       /// Direct the given undirected edge. The returned edge source
 
   827       /// will be the given edge.
 
   828       Edge direct(const UEdge&, const Node&) const {
 
   832       /// \brief Direct the given undirected edge.
 
   834       /// Direct the given undirected edge. The returned edge source
 
   835       /// will be the source of the undirected edge if the given bool
 
   837       Edge direct(const UEdge&, bool) const {
 
   841       /// \brief Returns true when the given node is an ANode.
 
   843       /// Returns true when the given node is an ANode.
 
   844       bool aNode(Node) const { return true;}
 
   846       /// \brief Returns true when the given node is an BNode.
 
   848       /// Returns true when the given node is an BNode.
 
   849       bool bNode(Node) const { return true;}
 
   851       /// \brief Returns the edge's end node which is in the ANode set.
 
   853       /// Returns the edge's end node which is in the ANode set.
 
   854       Node aNode(UEdge) const { return INVALID;}
 
   856       /// \brief Returns the edge's end node which is in the BNode set.
 
   858       /// Returns the edge's end node which is in the BNode set.
 
   859       Node bNode(UEdge) const { return INVALID;}
 
   861       /// \brief Returns true if the edge has default orientation.
 
   863       /// Returns whether the given directed edge is same orientation as
 
   864       /// the corresponding undirected edge.
 
   865       bool direction(Edge) const { return true; }
 
   867       /// \brief Returns the opposite directed edge.
 
   869       /// Returns the opposite directed edge.
 
   870       Edge oppositeEdge(Edge) const { return INVALID; }
 
   872       /// \brief Opposite node on an edge
 
   874       /// \return the opposite of the given Node on the given Edge
 
   875       Node oppositeNode(Node, UEdge) const { return INVALID; }
 
   877       /// \brief First node of the undirected edge.
 
   879       /// \return the first node of the given UEdge.
 
   881       /// Naturally uectected edges don't have direction and thus
 
   882       /// don't have source and target node. But we use these two methods
 
   883       /// to query the two endnodes of the edge. The direction of the edge
 
   884       /// which arises this way is called the inherent direction of the
 
   885       /// undirected edge, and is used to define the "default" direction
 
   886       /// of the directed versions of the edges.
 
   888       Node source(UEdge) const { return INVALID; }
 
   890       /// \brief Second node of the undirected edge.
 
   891       Node target(UEdge) const { return INVALID; }
 
   893       /// \brief Source node of the directed edge.
 
   894       Node source(Edge) const { return INVALID; }
 
   896       /// \brief Target node of the directed edge.
 
   897       Node target(Edge) const { return INVALID; }
 
   899       /// \brief Base node of the iterator
 
   901       /// Returns the base node (the source in this case) of the iterator
 
   902       Node baseNode(OutEdgeIt e) const {
 
   906       /// \brief Running node of the iterator
 
   908       /// Returns the running node (the target in this case) of the
 
   910       Node runningNode(OutEdgeIt e) const {
 
   914       /// \brief Base node of the iterator
 
   916       /// Returns the base node (the target in this case) of the iterator
 
   917       Node baseNode(InEdgeIt e) const {
 
   920       /// \brief Running node of the iterator
 
   922       /// Returns the running node (the source in this case) of the
 
   924       Node runningNode(InEdgeIt e) const {
 
   928       /// \brief Base node of the iterator
 
   930       /// Returns the base node of the iterator
 
   931       Node baseNode(IncEdgeIt) const {
 
   935       /// \brief Running node of the iterator
 
   937       /// Returns the running node of the iterator
 
   938       Node runningNode(IncEdgeIt) const {
 
   942       template <typename Graph>
 
   950     /// \brief An empty non-static undirected graph class.
 
   952     /// This class provides everything that \ref BpUGraph does.
 
   953     /// Additionally it enables building graphs from scratch.
 
   954     class ExtendableBpUGraph : public BpUGraph {
 
   957       /// \brief Add a new ANode to the graph.
 
   959       /// Add a new ANode to the graph.
 
   960       /// \return the new node.
 
   963       /// \brief Add a new ANode to the graph.
 
   965       /// Add a new ANode to the graph.
 
   966       /// \return the new node.
 
   969       /// \brief Add a new undirected edge to the graph.
 
   971       /// Add a new undirected edge to the graph. One of the nodes
 
   972       /// should be ANode and the other should be BNode.
 
   973       /// \pre The nodes are not in the same nodeset.
 
   974       /// \return the new edge.
 
   975       UEdge addEdge(const Node& from, const Node& to);
 
   977       /// \brief Resets the graph.
 
   979       /// This function deletes all undirected edges and nodes of the graph.
 
   980       /// It also frees the memory allocated to store them.
 
   983       template <typename Graph>
 
   985 	void constraints() {}
 
   990     /// \brief An empty erasable undirected graph class.
 
   992     /// This class is an extension of \ref ExtendableBpUGraph. It makes it
 
   993     /// possible to erase undirected edges or nodes.
 
   994     class ErasableBpUGraph : public ExtendableBpUGraph {
 
   997       /// \brief Deletes a node.
 
  1001       void erase(Node) { }
 
  1002       /// \brief Deletes an undirected edge.
 
  1004       /// Deletes an undirected edge.
 
  1006       void erase(UEdge) { }
 
  1008       template <typename Graph>
 
  1009       struct Constraints {
 
  1010 	void constraints() {}