3  * This file is a part of LEMON, a generic C++ optimization library
 
     5  * Copyright (C) 2003-2006
 
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
 
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
 
     9  * Permission to use, modify and distribute this software is granted
 
    10  * provided that this copyright notice appears in all copies. For
 
    11  * precise terms see the accompanying LICENSE file.
 
    13  * This software is provided "AS IS" with no warranty of any kind,
 
    14  * express or implied, and with no claim as to its suitability for any
 
    19 ///\ingroup graph_concepts
 
    21 ///\brief Undirected graphs and components of.
 
    24 #ifndef LEMON_CONCEPT_UGRAPH_H
 
    25 #define LEMON_CONCEPT_UGRAPH_H
 
    27 #include <lemon/concept/graph_component.h>
 
    28 #include <lemon/concept/graph.h>
 
    29 #include <lemon/bits/utility.h>
 
    34 //     /// Skeleton class which describes an edge with direction in \ref
 
    35 //     /// UGraph "undirected graph".
 
    36     template <typename UGraph>
 
    37     class UGraphEdge : public UGraph::UEdge {
 
    38       typedef typename UGraph::UEdge UEdge;
 
    39       typedef typename UGraph::Node Node;
 
    46       UGraphEdge(const UGraphEdge& e) : UGraph::UEdge(e) {}
 
    49       UGraphEdge(Invalid) {}
 
    51       /// \brief Directed edge from undirected edge and a source node.
 
    53       /// Constructs a directed edge from undirected edge and a source node.
 
    55       /// \note You have to specify the graph for this constructor.
 
    56       UGraphEdge(const UGraph &g,
 
    57 		     UEdge u_edge, Node n) {
 
    58 	ignore_unused_variable_warning(u_edge);
 
    59 	ignore_unused_variable_warning(g);
 
    60 	ignore_unused_variable_warning(n);
 
    64       UGraphEdge& operator=(UGraphEdge) { return *this; }
 
    67       bool operator==(UGraphEdge) const { return true; }
 
    69       bool operator!=(UGraphEdge) const { return false; }
 
    72       bool operator<(UGraphEdge) const { return false; }
 
    74       template <typename Edge>
 
    79 	void const_constraints() const {
 
    80 	  /// \bug This should be is_base_and_derived ...
 
    84 	  Edge e_with_source(graph,ue,n);
 
    85 	  ignore_unused_variable_warning(e_with_source);
 
    95     struct BaseIterableUGraphConcept {
 
    97       template <typename Graph>
 
   100 	typedef typename Graph::UEdge UEdge;
 
   101 	typedef typename Graph::Edge Edge;
 
   102 	typedef typename Graph::Node Node;
 
   105 	  checkConcept<BaseIterableGraphComponent, Graph>();
 
   106 	  checkConcept<GraphItem<>, UEdge>();
 
   107 	  //checkConcept<UGraphEdge<Graph>, Edge>();
 
   114 	void const_constraints() {
 
   116 	  n = graph.target(ue);
 
   117 	  n = graph.source(ue);
 
   118 	  n = graph.oppositeNode(n0, ue);
 
   121 	  b = graph.direction(e);
 
   122 	  Edge e = graph.direct(UEdge(), true);
 
   123 	  e = graph.direct(UEdge(), n);
 
   125 	  ignore_unused_variable_warning(b);
 
   137     struct IterableUGraphConcept {
 
   139       template <typename Graph>
 
   142 	  /// \todo we don't need the iterable component to be base iterable
 
   143 	  /// Don't we really???
 
   144 	  //checkConcept< BaseIterableUGraphConcept, Graph > ();
 
   146 	  checkConcept<IterableGraphComponent, Graph> ();
 
   148 	  typedef typename Graph::UEdge UEdge;
 
   149 	  typedef typename Graph::UEdgeIt UEdgeIt;
 
   150 	  typedef typename Graph::IncEdgeIt IncEdgeIt;
 
   152 	  checkConcept<GraphIterator<Graph, UEdge>, UEdgeIt>();
 
   153 	  checkConcept<GraphIncIterator<Graph, UEdge>, IncEdgeIt>();
 
   159     struct MappableUGraphConcept {
 
   161       template <typename Graph>
 
   166 	  Dummy() : value(0) {}
 
   167 	  Dummy(int _v) : value(_v) {}
 
   171 	  checkConcept<MappableGraphComponent, Graph>();
 
   173 	  typedef typename Graph::template UEdgeMap<int> IntMap;
 
   174 	  checkConcept<GraphMap<Graph, typename Graph::UEdge, int>,
 
   177 	  typedef typename Graph::template UEdgeMap<bool> BoolMap;
 
   178 	  checkConcept<GraphMap<Graph, typename Graph::UEdge, bool>,
 
   181 	  typedef typename Graph::template UEdgeMap<Dummy> DummyMap;
 
   182 	  checkConcept<GraphMap<Graph, typename Graph::UEdge, Dummy>,
 
   189     struct ExtendableUGraphConcept {
 
   191       template <typename Graph>
 
   194 	  node_a = graph.addNode();
 
   195 	  uedge = graph.addEdge(node_a, node_b);
 
   197 	typename Graph::Node node_a, node_b;
 
   198 	typename Graph::UEdge uedge;
 
   204     struct ErasableUGraphConcept {
 
   206       template <typename Graph>
 
   213 	typename Graph::Node n;
 
   214 	typename Graph::UEdge e;
 
   219     /// \addtogroup graph_concepts
 
   223     /// Class describing the concept of Undirected Graphs.
 
   225     /// This class describes the common interface of all Undirected
 
   228     /// As all concept describing classes it provides only interface
 
   229     /// without any sensible implementation. So any algorithm for
 
   230     /// undirected graph should compile with this class, but it will not
 
   231     /// run properly, of couse.
 
   233     /// In LEMON undirected graphs also fulfill the concept of directed
 
   234     /// graphs (\ref lemon::concept::StaticGraph "Graph Concept"). For
 
   235     /// explanation of this and more see also the page \ref ugraphs,
 
   236     /// a tutorial about undirected graphs.
 
   238     /// You can assume that all undirected graph can be handled
 
   239     /// as a static directed graph. This way it is fully conform
 
   240     /// to the StaticGraph concept.
 
   246       ///\todo undocumented
 
   248       typedef True UndirectedTag;
 
   250       /// \brief The base type of node iterators, 
 
   251       /// or in other words, the trivial node iterator.
 
   253       /// This is the base type of each node iterator,
 
   254       /// thus each kind of node iterator converts to this.
 
   255       /// More precisely each kind of node iterator should be inherited 
 
   256       /// from the trivial node iterator.
 
   259         /// Default constructor
 
   261         /// @warning The default constructor sets the iterator
 
   262         /// to an undefined value.
 
   264         /// Copy constructor.
 
   266         /// Copy constructor.
 
   268         Node(const Node&) { }
 
   270         /// Invalid constructor \& conversion.
 
   272         /// This constructor initializes the iterator to be invalid.
 
   273         /// \sa Invalid for more details.
 
   275         /// Equality operator
 
   277         /// Two iterators are equal if and only if they point to the
 
   278         /// same object or both are invalid.
 
   279         bool operator==(Node) const { return true; }
 
   281         /// Inequality operator
 
   283         /// \sa operator==(Node n)
 
   285         bool operator!=(Node) const { return true; }
 
   287 	/// Artificial ordering operator.
 
   289 	/// To allow the use of graph descriptors as key type in std::map or
 
   290 	/// similar associative container we require this.
 
   292 	/// \note This operator only have to define some strict ordering of
 
   293 	/// the items; this order has nothing to do with the iteration
 
   294 	/// ordering of the items.
 
   296 	/// \bug This is a technical requirement. Do we really need this?
 
   297 	bool operator<(Node) const { return false; }
 
   301       /// This iterator goes through each node.
 
   303       /// This iterator goes through each node.
 
   304       /// Its usage is quite simple, for example you can count the number
 
   305       /// of nodes in graph \c g of type \c Graph like this:
 
   308       /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count;
 
   310       class NodeIt : public Node {
 
   312         /// Default constructor
 
   314         /// @warning The default constructor sets the iterator
 
   315         /// to an undefined value.
 
   317         /// Copy constructor.
 
   319         /// Copy constructor.
 
   321         NodeIt(const NodeIt& n) : Node(n) { }
 
   322         /// Invalid constructor \& conversion.
 
   324         /// Initialize the iterator to be invalid.
 
   325         /// \sa Invalid for more details.
 
   327         /// Sets the iterator to the first node.
 
   329         /// Sets the iterator to the first node of \c g.
 
   331         NodeIt(const UGraph&) { }
 
   332         /// Node -> NodeIt conversion.
 
   334         /// Sets the iterator to the node of \c the graph pointed by 
 
   335 	/// the trivial iterator.
 
   336         /// This feature necessitates that each time we 
 
   337         /// iterate the edge-set, the iteration order is the same.
 
   338         NodeIt(const UGraph&, const Node&) { }
 
   341         /// Assign the iterator to the next node.
 
   343         NodeIt& operator++() { return *this; }
 
   347       /// The base type of the undirected edge iterators.
 
   349       /// The base type of the undirected edge iterators.
 
   353         /// Default constructor
 
   355         /// @warning The default constructor sets the iterator
 
   356         /// to an undefined value.
 
   358         /// Copy constructor.
 
   360         /// Copy constructor.
 
   362         UEdge(const UEdge&) { }
 
   363         /// Initialize the iterator to be invalid.
 
   365         /// Initialize the iterator to be invalid.
 
   368         /// Equality operator
 
   370         /// Two iterators are equal if and only if they point to the
 
   371         /// same object or both are invalid.
 
   372         bool operator==(UEdge) const { return true; }
 
   373         /// Inequality operator
 
   375         /// \sa operator==(UEdge n)
 
   377         bool operator!=(UEdge) const { return true; }
 
   379 	/// Artificial ordering operator.
 
   381 	/// To allow the use of graph descriptors as key type in std::map or
 
   382 	/// similar associative container we require this.
 
   384 	/// \note This operator only have to define some strict ordering of
 
   385 	/// the items; this order has nothing to do with the iteration
 
   386 	/// ordering of the items.
 
   388 	/// \bug This is a technical requirement. Do we really need this?
 
   389 	bool operator<(UEdge) const { return false; }
 
   392       /// This iterator goes through each undirected edge.
 
   394       /// This iterator goes through each undirected edge of a graph.
 
   395       /// Its usage is quite simple, for example you can count the number
 
   396       /// of undirected edges in a graph \c g of type \c Graph as follows:
 
   399       /// for(Graph::UEdgeIt e(g); e!=INVALID; ++e) ++count;
 
   401       class UEdgeIt : public UEdge {
 
   403         /// Default constructor
 
   405         /// @warning The default constructor sets the iterator
 
   406         /// to an undefined value.
 
   408         /// Copy constructor.
 
   410         /// Copy constructor.
 
   412         UEdgeIt(const UEdgeIt& e) : UEdge(e) { }
 
   413         /// Initialize the iterator to be invalid.
 
   415         /// Initialize the iterator to be invalid.
 
   418         /// This constructor sets the iterator to the first undirected edge.
 
   420         /// This constructor sets the iterator to the first undirected edge.
 
   421         UEdgeIt(const UGraph&) { }
 
   422         /// UEdge -> UEdgeIt conversion
 
   424         /// Sets the iterator to the value of the trivial iterator.
 
   425         /// This feature necessitates that each time we
 
   426         /// iterate the undirected edge-set, the iteration order is the 
 
   428         UEdgeIt(const UGraph&, const UEdge&) { } 
 
   429         /// Next undirected edge
 
   431         /// Assign the iterator to the next undirected edge.
 
   432         UEdgeIt& operator++() { return *this; }
 
   435       /// \brief This iterator goes trough the incident undirected 
 
   438       /// This iterator goes trough the incident undirected edges
 
   439       /// of a certain node of a graph. You should assume that the 
 
   440       /// loop edges will be iterated twice.
 
   442       /// Its usage is quite simple, for example you can compute the
 
   443       /// degree (i.e. count the number of incident edges of a node \c n
 
   444       /// in graph \c g of type \c Graph as follows. 
 
   448       /// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
 
   450       class IncEdgeIt : public UEdge {
 
   452         /// Default constructor
 
   454         /// @warning The default constructor sets the iterator
 
   455         /// to an undefined value.
 
   457         /// Copy constructor.
 
   459         /// Copy constructor.
 
   461         IncEdgeIt(const IncEdgeIt& e) : UEdge(e) { }
 
   462         /// Initialize the iterator to be invalid.
 
   464         /// Initialize the iterator to be invalid.
 
   466         IncEdgeIt(Invalid) { }
 
   467         /// This constructor sets the iterator to first incident edge.
 
   469         /// This constructor set the iterator to the first incident edge of
 
   471         IncEdgeIt(const UGraph&, const Node&) { }
 
   472         /// UEdge -> IncEdgeIt conversion
 
   474         /// Sets the iterator to the value of the trivial iterator \c e.
 
   475         /// This feature necessitates that each time we 
 
   476         /// iterate the edge-set, the iteration order is the same.
 
   477         IncEdgeIt(const UGraph&, const UEdge&) { }
 
   478         /// Next incident edge
 
   480         /// Assign the iterator to the next incident edge
 
   481 	/// of the corresponding node.
 
   482         IncEdgeIt& operator++() { return *this; }
 
   485       /// The directed edge type.
 
   487       /// The directed edge type. It can be converted to the
 
   489       class Edge : public UEdge {
 
   491         /// Default constructor
 
   493         /// @warning The default constructor sets the iterator
 
   494         /// to an undefined value.
 
   496         /// Copy constructor.
 
   498         /// Copy constructor.
 
   500         Edge(const Edge& e) : UEdge(e) { }
 
   501         /// Initialize the iterator to be invalid.
 
   503         /// Initialize the iterator to be invalid.
 
   506         /// Equality operator
 
   508         /// Two iterators are equal if and only if they point to the
 
   509         /// same object or both are invalid.
 
   510         bool operator==(Edge) const { return true; }
 
   511         /// Inequality operator
 
   513         /// \sa operator==(Edge n)
 
   515         bool operator!=(Edge) const { return true; }
 
   517 	/// Artificial ordering operator.
 
   519 	/// To allow the use of graph descriptors as key type in std::map or
 
   520 	/// similar associative container we require this.
 
   522 	/// \note This operator only have to define some strict ordering of
 
   523 	/// the items; this order has nothing to do with the iteration
 
   524 	/// ordering of the items.
 
   526 	/// \bug This is a technical requirement. Do we really need this?
 
   527 	bool operator<(Edge) const { return false; }
 
   530       /// This iterator goes through each directed edge.
 
   532       /// This iterator goes through each edge of a graph.
 
   533       /// Its usage is quite simple, for example you can count the number
 
   534       /// of edges in a graph \c g of type \c Graph as follows:
 
   537       /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count;
 
   539       class EdgeIt : public Edge {
 
   541         /// Default constructor
 
   543         /// @warning The default constructor sets the iterator
 
   544         /// to an undefined value.
 
   546         /// Copy constructor.
 
   548         /// Copy constructor.
 
   550         EdgeIt(const EdgeIt& e) : Edge(e) { }
 
   551         /// Initialize the iterator to be invalid.
 
   553         /// Initialize the iterator to be invalid.
 
   556         /// This constructor sets the iterator to the first edge.
 
   558         /// This constructor sets the iterator to the first edge of \c g.
 
   559         ///@param g the graph
 
   560         EdgeIt(const UGraph &g) { ignore_unused_variable_warning(g); }
 
   561         /// Edge -> EdgeIt conversion
 
   563         /// Sets the iterator to the value of the trivial iterator \c e.
 
   564         /// This feature necessitates that each time we 
 
   565         /// iterate the edge-set, the iteration order is the same.
 
   566         EdgeIt(const UGraph&, const Edge&) { } 
 
   569         /// Assign the iterator to the next edge.
 
   570         EdgeIt& operator++() { return *this; }
 
   573       /// This iterator goes trough the outgoing directed edges of a node.
 
   575       /// This iterator goes trough the \e outgoing edges of a certain node
 
   577       /// Its usage is quite simple, for example you can count the number
 
   578       /// of outgoing edges of a node \c n
 
   579       /// in graph \c g of type \c Graph as follows.
 
   582       /// for (Graph::OutEdgeIt e(g, n); e!=INVALID; ++e) ++count;
 
   585       class OutEdgeIt : public Edge {
 
   587         /// Default constructor
 
   589         /// @warning The default constructor sets the iterator
 
   590         /// to an undefined value.
 
   592         /// Copy constructor.
 
   594         /// Copy constructor.
 
   596         OutEdgeIt(const OutEdgeIt& e) : Edge(e) { }
 
   597         /// Initialize the iterator to be invalid.
 
   599         /// Initialize the iterator to be invalid.
 
   601         OutEdgeIt(Invalid) { }
 
   602         /// This constructor sets the iterator to the first outgoing edge.
 
   604         /// This constructor sets the iterator to the first outgoing edge of
 
   607         ///@param g the graph
 
   608         OutEdgeIt(const UGraph& n, const Node& g) {
 
   609 	  ignore_unused_variable_warning(n);
 
   610 	  ignore_unused_variable_warning(g);
 
   612         /// Edge -> OutEdgeIt conversion
 
   614         /// Sets the iterator to the value of the trivial iterator.
 
   615 	/// This feature necessitates that each time we 
 
   616         /// iterate the edge-set, the iteration order is the same.
 
   617         OutEdgeIt(const UGraph&, const Edge&) { }
 
   618         ///Next outgoing edge
 
   620         /// Assign the iterator to the next 
 
   621         /// outgoing edge of the corresponding node.
 
   622         OutEdgeIt& operator++() { return *this; }
 
   625       /// This iterator goes trough the incoming directed edges of a node.
 
   627       /// This iterator goes trough the \e incoming edges of a certain node
 
   629       /// Its usage is quite simple, for example you can count the number
 
   630       /// of outgoing edges of a node \c n
 
   631       /// in graph \c g of type \c Graph as follows.
 
   634       /// for(Graph::InEdgeIt e(g, n); e!=INVALID; ++e) ++count;
 
   637       class InEdgeIt : public Edge {
 
   639         /// Default constructor
 
   641         /// @warning The default constructor sets the iterator
 
   642         /// to an undefined value.
 
   644         /// Copy constructor.
 
   646         /// Copy constructor.
 
   648         InEdgeIt(const InEdgeIt& e) : Edge(e) { }
 
   649         /// Initialize the iterator to be invalid.
 
   651         /// Initialize the iterator to be invalid.
 
   653         InEdgeIt(Invalid) { }
 
   654         /// This constructor sets the iterator to first incoming edge.
 
   656         /// This constructor set the iterator to the first incoming edge of
 
   659         ///@param g the graph
 
   660         InEdgeIt(const UGraph& g, const Node& n) { 
 
   661 	  ignore_unused_variable_warning(n);
 
   662 	  ignore_unused_variable_warning(g);
 
   664         /// Edge -> InEdgeIt conversion
 
   666         /// Sets the iterator to the value of the trivial iterator \c e.
 
   667         /// This feature necessitates that each time we 
 
   668         /// iterate the edge-set, the iteration order is the same.
 
   669         InEdgeIt(const UGraph&, const Edge&) { }
 
   670         /// Next incoming edge
 
   672         /// Assign the iterator to the next inedge of the corresponding node.
 
   674         InEdgeIt& operator++() { return *this; }
 
   677       /// \brief Read write map of the nodes to type \c T.
 
   679       /// ReadWrite map of the nodes to type \c T.
 
   681       /// \warning Making maps that can handle bool type (NodeMap<bool>)
 
   682       /// needs some extra attention!
 
   683       /// \todo Wrong documentation
 
   685       class NodeMap : public ReadWriteMap< Node, T >
 
   690         NodeMap(const UGraph&) { }
 
   692         NodeMap(const UGraph&, T) { }
 
   695         NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
 
   696         ///Assignment operator
 
   697         NodeMap& operator=(const NodeMap&) { return *this; }
 
   698         // \todo fix this concept
 
   701       /// \brief Read write map of the directed edges to type \c T.
 
   703       /// Reference map of the directed edges to type \c T.
 
   705       /// \warning Making maps that can handle bool type (EdgeMap<bool>)
 
   706       /// needs some extra attention!
 
   707       /// \todo Wrong documentation
 
   709       class EdgeMap : public ReadWriteMap<Edge,T>
 
   714         EdgeMap(const UGraph&) { }
 
   716         EdgeMap(const UGraph&, T) { }
 
   718         EdgeMap(const EdgeMap& em) : ReadWriteMap<Edge,T>(em) { }
 
   719         ///Assignment operator
 
   720         EdgeMap& operator=(const EdgeMap&) { return *this; }
 
   721         // \todo fix this concept    
 
   724       /// Read write map of the undirected edges to type \c T.
 
   726       /// Reference map of the edges to type \c T.
 
   728       /// \warning Making maps that can handle bool type (UEdgeMap<bool>)
 
   729       /// needs some extra attention!
 
   730       /// \todo Wrong documentation
 
   732       class UEdgeMap : public ReadWriteMap<UEdge,T>
 
   737         UEdgeMap(const UGraph&) { }
 
   739         UEdgeMap(const UGraph&, T) { }
 
   741         UEdgeMap(const UEdgeMap& em) : ReadWriteMap<UEdge,T>(em) {}
 
   742         ///Assignment operator
 
   743         UEdgeMap &operator=(const UEdgeMap&) { return *this; }
 
   744         // \todo fix this concept    
 
   747       /// \brief Direct the given undirected edge.
 
   749       /// Direct the given undirected edge. The returned edge source
 
   750       /// will be the given edge.
 
   751       Edge direct(const UEdge&, const Node&) const {
 
   755       /// \brief Direct the given undirected edge.
 
   757       /// Direct the given undirected edge. The returned edge source
 
   758       /// will be the source of the undirected edge if the given bool
 
   760       Edge direct(const UEdge&, bool) const {
 
   764       /// \brief Returns true if the edge has default orientation.
 
   766       /// Returns whether the given directed edge is same orientation as
 
   767       /// the corresponding undirected edge.
 
   768       bool direction(Edge) const { return true; }
 
   770       /// \brief Returns the opposite directed edge.
 
   772       /// Returns the opposite directed edge.
 
   773       Edge oppositeEdge(Edge) const { return INVALID; }
 
   775       /// \brief Opposite node on an edge
 
   777       /// \return the opposite of the given Node on the given Edge
 
   778       Node oppositeNode(Node, UEdge) const { return INVALID; }
 
   780       /// \brief First node of the undirected edge.
 
   782       /// \return the first node of the given UEdge.
 
   784       /// Naturally uectected edges don't have direction and thus
 
   785       /// don't have source and target node. But we use these two methods
 
   786       /// to query the two endnodes of the edge. The direction of the edge
 
   787       /// which arises this way is called the inherent direction of the
 
   788       /// undirected edge, and is used to define the "default" direction
 
   789       /// of the directed versions of the edges.
 
   791       Node source(UEdge) const { return INVALID; }
 
   793       /// \brief Second node of the undirected edge.
 
   794       Node target(UEdge) const { return INVALID; }
 
   796       /// \brief Source node of the directed edge.
 
   797       Node source(Edge) const { return INVALID; }
 
   799       /// \brief Target node of the directed edge.
 
   800       Node target(Edge) const { return INVALID; }
 
   802 //       /// \brief First node of the graph
 
   804 //       /// \note This method is part of so called \ref
 
   805 //       /// developpers_interface "Developpers' interface", so it shouldn't
 
   806 //       /// be used in an end-user program.
 
   807       void first(Node&) const {}
 
   808 //       /// \brief Next node of the graph
 
   810 //       /// \note This method is part of so called \ref
 
   811 //       /// developpers_interface "Developpers' interface", so it shouldn't
 
   812 //       /// be used in an end-user program.
 
   813       void next(Node&) const {}
 
   815 //       /// \brief First undirected edge of the graph
 
   817 //       /// \note This method is part of so called \ref
 
   818 //       /// developpers_interface "Developpers' interface", so it shouldn't
 
   819 //       /// be used in an end-user program.
 
   820       void first(UEdge&) const {}
 
   821 //       /// \brief Next undirected edge of the graph
 
   823 //       /// \note This method is part of so called \ref
 
   824 //       /// developpers_interface "Developpers' interface", so it shouldn't
 
   825 //       /// be used in an end-user program.
 
   826       void next(UEdge&) const {}
 
   828 //       /// \brief First directed edge of the graph
 
   830 //       /// \note This method is part of so called \ref
 
   831 //       /// developpers_interface "Developpers' interface", so it shouldn't
 
   832 //       /// be used in an end-user program.
 
   833       void first(Edge&) const {}
 
   834 //       /// \brief Next directed edge of the graph
 
   836 //       /// \note This method is part of so called \ref
 
   837 //       /// developpers_interface "Developpers' interface", so it shouldn't
 
   838 //       /// be used in an end-user program.
 
   839       void next(Edge&) const {}
 
   841 //       /// \brief First outgoing edge from a given node
 
   843 //       /// \note This method is part of so called \ref
 
   844 //       /// developpers_interface "Developpers' interface", so it shouldn't
 
   845 //       /// be used in an end-user program.
 
   846       void firstOut(Edge&, Node) const {}
 
   847 //       /// \brief Next outgoing edge to a node
 
   849 //       /// \note This method is part of so called \ref
 
   850 //       /// developpers_interface "Developpers' interface", so it shouldn't
 
   851 //       /// be used in an end-user program.
 
   852       void nextOut(Edge&) const {}
 
   854 //       /// \brief First incoming edge to a given node
 
   856 //       /// \note This method is part of so called \ref
 
   857 //       /// developpers_interface "Developpers' interface", so it shouldn't
 
   858 //       /// be used in an end-user program.
 
   859       void firstIn(Edge&, Node) const {}
 
   860 //       /// \brief Next incoming edge to a node
 
   862 //       /// \note This method is part of so called \ref
 
   863 //       /// developpers_interface "Developpers' interface", so it shouldn't
 
   864 //       /// be used in an end-user program.
 
   865       void nextIn(Edge&) const {}
 
   868       void firstInc(UEdge &, bool &, const Node &) const {}
 
   870       void nextInc(UEdge &, bool &) const {}
 
   872       /// \brief Base node of the iterator
 
   874       /// Returns the base node (the source in this case) of the iterator
 
   875       Node baseNode(OutEdgeIt e) const {
 
   878       /// \brief Running node of the iterator
 
   880       /// Returns the running node (the target in this case) of the
 
   882       Node runningNode(OutEdgeIt e) const {
 
   886       /// \brief Base node of the iterator
 
   888       /// Returns the base node (the target in this case) of the iterator
 
   889       Node baseNode(InEdgeIt e) const {
 
   892       /// \brief Running node of the iterator
 
   894       /// Returns the running node (the source in this case) of the
 
   896       Node runningNode(InEdgeIt e) const {
 
   900       /// \brief Base node of the iterator
 
   902       /// Returns the base node of the iterator
 
   903       Node baseNode(IncEdgeIt) const {
 
   907       /// \brief Running node of the iterator
 
   909       /// Returns the running node of the iterator
 
   910       Node runningNode(IncEdgeIt) const {
 
   914       template <typename Graph>
 
   917 	  checkConcept<BaseIterableUGraphConcept, Graph>();
 
   918 	  checkConcept<IterableUGraphConcept, Graph>();
 
   919 	  checkConcept<MappableUGraphConcept, Graph>();
 
   925     /// \brief An empty non-static undirected graph class.
 
   927     /// This class provides everything that \ref UGraph does.
 
   928     /// Additionally it enables building graphs from scratch.
 
   929     class ExtendableUGraph : public UGraph {
 
   932       /// \brief Add a new node to the graph.
 
   934       /// Add a new node to the graph.
 
   935       /// \return the new node.
 
   938       /// \brief Add a new undirected edge to the graph.
 
   940       /// Add a new undirected edge to the graph.
 
   941       /// \return the new edge.
 
   942       UEdge addEdge(const Node& from, const Node& to);
 
   944       /// \brief Resets the graph.
 
   946       /// This function deletes all undirected edges and nodes of the graph.
 
   947       /// It also frees the memory allocated to store them.
 
   950       template <typename Graph>
 
   953 	  checkConcept<BaseIterableUGraphConcept, Graph>();
 
   954 	  checkConcept<IterableUGraphConcept, Graph>();
 
   955 	  checkConcept<MappableUGraphConcept, Graph>();
 
   957 	  checkConcept<UGraph, Graph>();
 
   958 	  checkConcept<ExtendableUGraphConcept, Graph>();
 
   959 	  checkConcept<ClearableGraphComponent, Graph>();
 
   965     /// \brief An empty erasable undirected graph class.
 
   967     /// This class is an extension of \ref ExtendableUGraph. It makes it
 
   968     /// possible to erase undirected edges or nodes.
 
   969     class ErasableUGraph : public ExtendableUGraph {
 
   972       /// \brief Deletes a node.
 
   977       /// \brief Deletes an undirected edge.
 
   979       /// Deletes an undirected edge.
 
   981       void erase(UEdge) { }
 
   983       template <typename Graph>
 
   986 	  checkConcept<ExtendableUGraph, Graph>();
 
   987 	  checkConcept<ErasableUGraphConcept, Graph>();