- Clarified Path skeleton.
- setStart() changed to setStartNode()
     7 #include <hugo/list_graph.h>
 
    13 class string_int_map : public map<string,int> {
 
    15   int get(const string &s) {
 
    16     // Bocs, ez igy gaaaany, de nem volt kedvem utananezni, hogy
 
    17     // hogy is mukodik ez a map :)
 
    23   void set(const string &s, int i) {
 
    29 // Egy olyan "map", ami nem tud semmit, csak a typedef-eket.
 
    30 // Valami elegansabb megoldas kene a Kruskalban...
 
    32 template <typename K, typename V>
 
    41   typedef ListGraph::Node Node;
 
    42   typedef ListGraph::Edge Edge;
 
    43   typedef ListGraph::NodeIt NodeIt;
 
    44   typedef ListGraph::EdgeIt EdgeIt;
 
    55   Edge e1 = G.addEdge(s, v1);
 
    56   Edge e2 = G.addEdge(s, v2);
 
    57   Edge e3 = G.addEdge(v1, v2);
 
    58   Edge e4 = G.addEdge(v2, v1);
 
    59   Edge e5 = G.addEdge(v1, v3);
 
    60   Edge e6 = G.addEdge(v3, v2);
 
    61   Edge e7 = G.addEdge(v2, v4);
 
    62   Edge e8 = G.addEdge(v4, v3);
 
    63   Edge e9 = G.addEdge(v3, t);
 
    64   Edge e10 = G.addEdge(v4, t);
 
    66   typedef ListGraph::EdgeMap<double> ECostMap;
 
    67   typedef ListGraph::EdgeMap<bool> EBoolMap;
 
    69   ECostMap edge_cost_map(G, 2);
 
    73   cout << "Uniform 2-es koltseggel: " 
 
    74        << kruskalEdgeMap(G, edge_cost_map, tree_map)
 
    78   edge_cost_map.set(e1, -10);
 
    79   edge_cost_map.set(e2, -9);
 
    80   edge_cost_map.set(e3, -8);
 
    81   edge_cost_map.set(e4, -7);
 
    82   edge_cost_map.set(e5, -6);
 
    83   edge_cost_map.set(e6, -5);
 
    84   edge_cost_map.set(e7, -4);
 
    85   edge_cost_map.set(e8, -3);
 
    86   edge_cost_map.set(e9, -2);
 
    87   edge_cost_map.set(e10, -1);
 
    89   vector<Edge> tree_edge_vec;
 
    91   cout << "Nemkonst koltseggel (-31): "
 
    92        << kruskalEdgeMap_IteratorOut(G, edge_cost_map,
 
    93 				     back_inserter(tree_edge_vec))
 
    97   for(vector<Edge>::iterator e = tree_edge_vec.begin();
 
    98       e != tree_edge_vec.end(); ++e, ++i) {
 
    99     cout << i << ". el: " << G.id(*e) << endl;
 
   102   tree_edge_vec.clear();
 
   103 //   SequenceOutput< back_insert_iterator< vector<Edge> > > 
 
   104 //     vec_filler(back_inserter(tree_edge_vec));
 
   105 //   cout << "Nemkonst koltseggel tarhatekonyabban: "
 
   107 // 		  KruskalMapVec<ECostMap>(G, edge_cost_map),
 
   111 //   cout << "Nemkonst koltseggel tarhatekonyabban: "
 
   113 // 		  KruskalMapVec<ECostMap>(G, edge_cost_map),
 
   114 // 		  makeSequenceOutput(back_inserter(tree_edge_vec))
 
   119 //   for(vector<Edge>::iterator e = tree_edge_vec.begin();
 
   120 //       e != tree_edge_vec.end(); ++e, ++i) {
 
   121 //     cout << i << ". el: " << *e << endl;
 
   124 // **********************************************************************
 
   126 //   typedef MinCostTreeKruskal<ListGraph, ECostMap, EBoolMap> MCTK;
 
   128 //   MCTK mctk(G, edge_cost_map, tree_map);
 
   129 //   double k0lts = mctk.run();
 
   131 //   cout << "Uniform 2-es koltseggel: " << k0lts << endl;
 
   133 //   // Max koltsegu fa szamitasa elore megrendezett koltseg vektorbol:
 
   134 //   typedef MinCostTreeKruskal<ListGraph, DummyMap<Edge,int>, EBoolMap> MCTK2;
 
   135 //   MCTK2 mctk2(G, DummyMap<Edge,int>(), tree_map);
 
   136 //   MCTK2::EdgeCostVector ecv;
 
   137 //   ecv.push_back(make_pair(e1, 10));
 
   138 //   ecv.push_back(make_pair(e2, 9));
 
   139 //   ecv.push_back(make_pair(e3, 8));
 
   140 //   ecv.push_back(make_pair(e4, 7));
 
   141 //   ecv.push_back(make_pair(e5, 6));
 
   142 //   ecv.push_back(make_pair(e6, 5));
 
   143 //   ecv.push_back(make_pair(e7, 4));
 
   144 //   ecv.push_back(make_pair(e8, 3));
 
   145 //   ecv.push_back(make_pair(e9, 2));
 
   146 //   ecv.push_back(make_pair(e10, 1));
 
   148 //   k0lts = mctk2.run(ecv);
 
   149 //   cout << "Max koltsegu fa elore megrendezett koltseg vektorbol: 31 = "