- Clarified Path skeleton.
- setStart() changed to setStartNode()
     7 #include <LEDA/graph.h>
 
     8 #include <LEDA/mcb_matching.h>
 
    10 #include <LEDA/graph_gen.h>
 
    12 #include <leda_graph_wrapper.h>
 
    13 #include <sage_graph.h>
 
    14 //#include <smart_graph.h>
 
    16 #include <hugo/time_measure.h>
 
    17 #include <for_each_macros.h>
 
    18 #include <hugo/graph_wrapper.h>
 
    19 #include <bipartite_graph_wrapper.h>
 
    20 #include <hugo/maps.h>
 
    21 #include <hugo/max_flow.h>
 
    22 #include <augmenting_flow.h>
 
    25  * Inicializalja a veletlenszamgeneratort.
 
    26  * Figyelem, ez nem jo igazi random szamokhoz,
 
    27  * erre ne bizzad a titkaidat!
 
    31 	unsigned int seed = getpid();
 
    39  * Egy veletlen int-et ad vissza 0 es m-1 kozott.
 
    43   return int( double(m) * rand() / (RAND_MAX + 1.0) );
 
    51   //lg.make_undirected();
 
    52   typedef LedaGraphWrapper<leda::graph> Graph;
 
    56   //typedef UndirSageGraph Graph; 
 
    59   typedef Graph::Node Node;
 
    60   typedef Graph::NodeIt NodeIt;
 
    61   typedef Graph::Edge Edge;
 
    62   typedef Graph::EdgeIt EdgeIt;
 
    63   typedef Graph::OutEdgeIt OutEdgeIt;
 
    65   std::vector<Graph::Node> s_nodes;
 
    66   std::vector<Graph::Node> t_nodes;
 
    69   std::cout << "number of nodes in the first color class=";
 
    72   std::cout << "number of nodes in the second color class=";
 
    75   std::cout << "number of edges=";
 
    78   std::cout << "A bipartite graph is a random group graph if the color classes \nA and B are partitiones to A_0, A_1, ..., A_{k-1} and B_0, B_1, ..., B_{k-1} \nas equally as possible \nand the edges from A_i goes to A_{i-1 mod k} and A_{i+1 mod k}.\n";
 
    79   std::cout << "number of groups in LEDA random group graph=";
 
    81   std::cout << std::endl;
 
    83   leda_list<leda_node> lS;
 
    84   leda_list<leda_node> lT;
 
    85   random_bigraph(lg, a, b, m, lS, lT, k);
 
    87   Graph::NodeMap<int> ref_map(g, -1);
 
    88   IterableBoolMap< Graph::NodeMap<int> > bipartite_map(ref_map);
 
    90   //generating leda random group graph
 
    92   forall(ln, lS) bipartite_map.insert(ln, false);
 
    93   forall(ln, lT) bipartite_map.insert(ln, true);
 
    95   //making bipartite graph
 
    96   typedef BipartiteGraphWrapper<Graph> BGW;
 
    97   BGW bgw(g, bipartite_map);
 
   101   typedef stBipartiteGraphWrapper<BGW> stGW;
 
   103   ConstMap<stGW::Edge, int> const1map(1);
 
   104   stGW::EdgeMap<int> flow(stgw);
 
   109   FOR_EACH_LOC(stGW::EdgeIt, e, stgw) flow.set(e, 0);
 
   110   MaxFlow<stGW, int, ConstMap<stGW::Edge, int>, stGW::EdgeMap<int> > 
 
   111     max_flow_test(stgw, stgw.S_NODE, stgw.T_NODE, const1map, flow/*, true*/);
 
   113   std::cout << "HUGO max matching algorithm based on preflow." << std::endl 
 
   114 	    << "Size of matching: " 
 
   115 	    << max_flow_test.flowValue() << std::endl;
 
   116   std::cout << "elapsed time: " << ts << std::endl << std::endl;
 
   119   leda_list<leda_edge> ml=MAX_CARD_BIPARTITE_MATCHING(lg);
 
   120   std::cout << "LEDA max matching algorithm." << std::endl 
 
   121 	    << "Size of matching: " 
 
   122 	    << ml.size() << std::endl;
 
   123   std::cout << "elapsed time: " << ts << std::endl;
 
   127   FOR_EACH_LOC(stGW::EdgeIt, e, stgw) flow.set(e, 0);
 
   128   typedef SageGraph MutableGraph;
 
   129   AugmentingFlow<stGW, int, ConstMap<stGW::Edge, int>, stGW::EdgeMap<int> > 
 
   130     max_flow_test_1(stgw, stgw.S_NODE, stgw.T_NODE, const1map, flow/*, true*/);
 
   131   while (max_flow_test_1.augmentOnBlockingFlow<MutableGraph>()) { }
 
   132   std::cout << "HUGO max matching algorithm based on blocking flow augmentation." 
 
   133 	    << std::endl << "Matching size: " 
 
   134 	    << max_flow_test_1.flowValue() << std::endl;
 
   135   std::cout << "elapsed time: " << ts << std::endl;