src/work/jacint/max_flow.h
author athos
Thu, 20 May 2004 09:42:31 +0000
changeset 649 ce74706e924d
parent 640 d426dca0aaf7
child 650 588ff2ca55bd
permissions -rw-r--r--
Cooorected some eroorrs.
     1 // -*- C++ -*-
     2 #ifndef HUGO_MAX_FLOW_H
     3 #define HUGO_MAX_FLOW_H
     4 
     5 #include <vector>
     6 #include <queue>
     7 #include <stack>
     8 
     9 #include <hugo/graph_wrapper.h>
    10 #include <bfs_dfs.h>
    11 #include <hugo/invalid.h>
    12 #include <hugo/maps.h>
    13 #include <hugo/for_each_macros.h>
    14 
    15 /// \file
    16 /// \brief Maximum flow algorithms.
    17 /// \ingroup galgs
    18 
    19 namespace hugo {
    20 
    21   /// \addtogroup galgs
    22   /// @{                                                                                                                                        
    23   ///Maximum flow algorithms class.
    24 
    25   ///This class provides various algorithms for finding a flow of
    26   ///maximum value in a directed graph. The \e source node, the \e
    27   ///target node, the \e capacity of the edges and the \e starting \e
    28   ///flow value of the edges should be passed to the algorithm through the
    29   ///constructor. It is possible to change these quantities using the
    30   ///functions \ref resetSource, \ref resetTarget, \ref resetCap and
    31   ///\ref resetFlow. Before any subsequent runs of any algorithm of
    32   ///the class \ref resetFlow should be called. 
    33 
    34   ///After running an algorithm of the class, the actual flow value 
    35   ///can be obtained by calling \ref flowValue(). The minimum
    36   ///value cut can be written into a \c node map of \c bools by
    37   ///calling \ref minCut. (\ref minMinCut and \ref maxMinCut writes
    38   ///the inclusionwise minimum and maximum of the minimum value
    39   ///cuts, resp.)                                                                                                                               
    40   ///\param Graph The directed graph type the algorithm runs on.
    41   ///\param Num The number type of the capacities and the flow values.
    42   ///\param CapMap The capacity map type.
    43   ///\param FlowMap The flow map type.                                                                                                           
    44   ///\author Marton Makai, Jacint Szabo 
    45   template <typename Graph, typename Num,
    46 	    typename CapMap=typename Graph::template EdgeMap<Num>,
    47             typename FlowMap=typename Graph::template EdgeMap<Num> >
    48   class MaxFlow {
    49   protected:
    50     typedef typename Graph::Node Node;
    51     typedef typename Graph::NodeIt NodeIt;
    52     typedef typename Graph::EdgeIt EdgeIt;
    53     typedef typename Graph::OutEdgeIt OutEdgeIt;
    54     typedef typename Graph::InEdgeIt InEdgeIt;
    55 
    56     typedef typename std::vector<std::stack<Node> > VecStack;
    57     typedef typename Graph::template NodeMap<Node> NNMap;
    58     typedef typename std::vector<Node> VecNode;
    59 
    60     const Graph* g;
    61     Node s;
    62     Node t;
    63     const CapMap* capacity;
    64     FlowMap* flow;
    65     int n;      //the number of nodes of G
    66     typedef ResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;
    67     typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt;
    68     typedef typename ResGW::Edge ResGWEdge;
    69     //typedef typename ResGW::template NodeMap<bool> ReachedMap;
    70     typedef typename Graph::template NodeMap<int> ReachedMap;
    71 
    72 
    73     //level works as a bool map in augmenting path algorithms and is
    74     //used by bfs for storing reached information.  In preflow, it
    75     //shows the levels of nodes.     
    76     ReachedMap level;
    77 
    78     //excess is needed only in preflow
    79     typename Graph::template NodeMap<Num> excess;
    80 
    81     //fixme    
    82 //   protected:
    83     //     MaxFlow() { }
    84     //     void set(const Graph& _G, Node _s, Node _t, const CapMap& _capacity,
    85     // 	     FlowMap& _flow)
    86     //       {
    87     // 	g=&_G;
    88     // 	s=_s;
    89     // 	t=_t;
    90     // 	capacity=&_capacity;
    91     // 	flow=&_flow;
    92     // 	n=_G.nodeNum;
    93     // 	level.set (_G); //kellene vmi ilyesmi fv
    94     // 	excess(_G,0); //itt is
    95     //       }
    96 
    97     // constants used for heuristics
    98     static const int H0=20;
    99     static const int H1=1;
   100 
   101   public:
   102 
   103     ///Indicates the property of the starting flow.
   104 
   105     ///Indicates the property of the starting flow. The meanings are as follows:
   106     ///- \c ZERO_FLOW: constant zero flow
   107     ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to
   108     ///the sum of the out-flows in every node except the \e source and
   109     ///the \e target.
   110     ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at 
   111     ///least the sum of the out-flows in every node except the \e source.
   112     ///- \c NO_FLOW: indicates an unspecified edge map. \ref flow will be 
   113     ///set to the constant zero flow in the beginning of the algorithm in this case.
   114     enum FlowEnum{
   115       ZERO_FLOW,
   116       GEN_FLOW,
   117       PRE_FLOW,
   118       NO_FLOW
   119     };
   120 
   121     enum StatusEnum {
   122       AFTER_NOTHING,
   123       AFTER_AUGMENTING,
   124       AFTER_PRE_FLOW_PHASE_1,      
   125       AFTER_PRE_FLOW_PHASE_2
   126     };
   127 
   128     /// Don not needle this flag only if necessary.
   129     StatusEnum status;
   130     int number_of_augmentations;
   131 
   132 
   133     template<typename IntMap>
   134     class TrickyReachedMap {
   135     protected:
   136       IntMap* map;
   137       int* number_of_augmentations;
   138     public:
   139       TrickyReachedMap(IntMap& _map, int& _number_of_augmentations) : 
   140 	map(&_map), number_of_augmentations(&_number_of_augmentations) { }
   141       void set(const Node& n, bool b) {
   142 	map->set(n, *number_of_augmentations);
   143       }
   144       bool operator[](const Node& n) const { 
   145 	return (*map)[n]==*number_of_augmentations; 
   146       }
   147     };
   148     
   149     MaxFlow(const Graph& _G, Node _s, Node _t, const CapMap& _capacity,
   150 	    FlowMap& _flow) :
   151       g(&_G), s(_s), t(_t), capacity(&_capacity),
   152       flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0), 
   153       status(AFTER_NOTHING), number_of_augmentations(0) { }
   154 
   155     ///Runs a maximum flow algorithm.
   156 
   157     ///Runs a preflow algorithm, which is the fastest maximum flow
   158     ///algorithm up-to-date. The default for \c fe is ZERO_FLOW.
   159     ///\pre The starting flow must be
   160     /// - a constant zero flow if \c fe is \c ZERO_FLOW,
   161     /// - an arbitary flow if \c fe is \c GEN_FLOW,
   162     /// - an arbitary preflow if \c fe is \c PRE_FLOW,
   163     /// - any map if \c fe is NO_FLOW.
   164     void run(FlowEnum fe=ZERO_FLOW) {
   165       preflow(fe);
   166     }
   167 
   168                                                                               
   169     ///Runs a preflow algorithm.  
   170 
   171     ///Runs a preflow algorithm. The preflow algorithms provide the
   172     ///fastest way to compute a maximum flow in a directed graph.
   173     ///\pre The starting flow must be
   174     /// - a constant zero flow if \c fe is \c ZERO_FLOW,
   175     /// - an arbitary flow if \c fe is \c GEN_FLOW,
   176     /// - an arbitary preflow if \c fe is \c PRE_FLOW,
   177     /// - any map if \c fe is NO_FLOW.
   178     void preflow(FlowEnum fe) {
   179       preflowPhase1(fe);
   180       preflowPhase2();
   181     }
   182     // Heuristics:
   183     //   2 phase
   184     //   gap
   185     //   list 'level_list' on the nodes on level i implemented by hand
   186     //   stack 'active' on the active nodes on level i                                                                                    
   187     //   runs heuristic 'highest label' for H1*n relabels
   188     //   runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label'
   189     //   Parameters H0 and H1 are initialized to 20 and 1.
   190 
   191     ///Runs the first phase of the preflow algorithm.
   192 
   193     ///The preflow algorithm consists of two phases, this method runs the
   194     ///first phase. After the first phase the maximum flow value and a
   195     ///minimum value cut can already be computed, though a maximum flow
   196     ///is net yet obtained. So after calling this method \ref flowValue
   197     ///and \ref actMinCut gives proper results.
   198     ///\warning: \ref minCut, \ref minMinCut and \ref maxMinCut do not
   199     ///give minimum value cuts unless calling \ref preflowPhase2.
   200     ///\pre The starting flow must be
   201     /// - a constant zero flow if \c fe is \c ZERO_FLOW,
   202     /// - an arbitary flow if \c fe is \c GEN_FLOW,
   203     /// - an arbitary preflow if \c fe is \c PRE_FLOW,
   204     /// - any map if \c fe is NO_FLOW.
   205     void preflowPhase1(FlowEnum fe);
   206 
   207     ///Runs the second phase of the preflow algorithm.
   208 
   209     ///The preflow algorithm consists of two phases, this method runs
   210     ///the second phase. After calling \ref preflowPhase1 and then
   211     ///\ref preflowPhase2 the methods \ref flowValue, \ref minCut,
   212     ///\ref minMinCut and \ref maxMinCut give proper results.
   213     ///\pre \ref preflowPhase1 must be called before.
   214     void preflowPhase2();
   215 
   216     /// Starting from a flow, this method searches for an augmenting path
   217     /// according to the Edmonds-Karp algorithm
   218     /// and augments the flow on if any.
   219     /// The return value shows if the augmentation was succesful.
   220     bool augmentOnShortestPath();
   221     bool augmentOnShortestPath2();
   222 
   223     /// Starting from a flow, this method searches for an augmenting blocking
   224     /// flow according to Dinits' algorithm and augments the flow on if any.
   225     /// The blocking flow is computed in a physically constructed
   226     /// residual graph of type \c Mutablegraph.
   227     /// The return value show sif the augmentation was succesful.
   228     template<typename MutableGraph> bool augmentOnBlockingFlow();
   229 
   230     /// The same as \c augmentOnBlockingFlow<MutableGraph> but the
   231     /// residual graph is not constructed physically.
   232     /// The return value shows if the augmentation was succesful.
   233     bool augmentOnBlockingFlow2();
   234 
   235     /// Returns the maximum value of a flow.
   236 
   237     /// Returns the maximum value of a flow, by counting the 
   238     /// over-flow of the target node \ref t.
   239     /// It can be called already after running \ref preflowPhase1.
   240     Num flowValue() const {
   241       Num a=0;
   242       FOR_EACH_INC_LOC(InEdgeIt, e, *g, t) a+=(*flow)[e];
   243       FOR_EACH_INC_LOC(OutEdgeIt, e, *g, t) a-=(*flow)[e];
   244       return a;
   245       //marci figyu: excess[t] epp ezt adja preflow 1. fazisa utan   
   246     }
   247 
   248     ///Returns a minimum value cut after calling \ref preflowPhase1.
   249 
   250     ///After the first phase of the preflow algorithm the maximum flow
   251     ///value and a minimum value cut can already be computed. This
   252     ///method can be called after running \ref preflowPhase1 for
   253     ///obtaining a minimum value cut.
   254     /// \warning Gives proper result only right after calling \ref
   255     /// preflowPhase1.
   256     /// \todo We have to make some status variable which shows the
   257     /// actual state
   258     /// of the class. This enables us to determine which methods are valid
   259     /// for MinCut computation
   260     template<typename _CutMap>
   261     void actMinCut(_CutMap& M) const {
   262       NodeIt v;
   263       switch (status) {
   264 	case AFTER_PRE_FLOW_PHASE_1:
   265 	for(g->first(v); g->valid(v); g->next(v)) {
   266 	  if (level[v] < n) {
   267 	    M.set(v, false);
   268 	  } else {
   269 	    M.set(v, true);
   270 	  }
   271 	}
   272 	break;
   273 	case AFTER_PRE_FLOW_PHASE_2:
   274 	case AFTER_NOTHING:
   275 	minMinCut(M);
   276 	break;
   277 	case AFTER_AUGMENTING:
   278 	for(g->first(v); g->valid(v); g->next(v)) {
   279 	  if (level[v]) {
   280 	    M.set(v, true);
   281 	  } else {
   282 	    M.set(v, false);
   283 	  }
   284 	}
   285 	break;
   286       }
   287     }
   288 
   289     ///Returns the inclusionwise minimum of the minimum value cuts.
   290 
   291     ///Sets \c M to the characteristic vector of the minimum value cut
   292     ///which is inclusionwise minimum. It is computed by processing
   293     ///a bfs from the source node \c s in the residual graph.
   294     ///\pre M should be a node map of bools initialized to false.
   295     ///\pre \c flow must be a maximum flow.
   296     template<typename _CutMap>
   297     void minMinCut(_CutMap& M) const {
   298       std::queue<Node> queue;
   299 
   300       M.set(s,true);
   301       queue.push(s);
   302 
   303       while (!queue.empty()) {
   304         Node w=queue.front();
   305 	queue.pop();
   306 
   307 	OutEdgeIt e;
   308 	for(g->first(e,w) ; g->valid(e); g->next(e)) {
   309 	  Node v=g->head(e);
   310 	  if (!M[v] && (*flow)[e] < (*capacity)[e] ) {
   311 	    queue.push(v);
   312 	    M.set(v, true);
   313 	  }
   314 	}
   315 
   316 	InEdgeIt f;
   317 	for(g->first(f,w) ; g->valid(f); g->next(f)) {
   318 	  Node v=g->tail(f);
   319 	  if (!M[v] && (*flow)[f] > 0 ) {
   320 	    queue.push(v);
   321 	    M.set(v, true);
   322 	  }
   323 	}
   324       }
   325     }
   326 
   327     ///Returns the inclusionwise maximum of the minimum value cuts.
   328 
   329     ///Sets \c M to the characteristic vector of the minimum value cut
   330     ///which is inclusionwise maximum. It is computed by processing a
   331     ///backward bfs from the target node \c t in the residual graph.
   332     ///\pre M should be a node map of bools initialized to false.
   333     ///\pre \c flow must be a maximum flow. 
   334     template<typename _CutMap>
   335     void maxMinCut(_CutMap& M) const {
   336 
   337       NodeIt v;
   338       for(g->first(v) ; g->valid(v); g->next(v)) {
   339 	M.set(v, true);
   340       }
   341 
   342       std::queue<Node> queue;
   343 
   344       M.set(t,false);
   345       queue.push(t);
   346 
   347       while (!queue.empty()) {
   348         Node w=queue.front();
   349 	queue.pop();
   350 
   351 	InEdgeIt e;
   352 	for(g->first(e,w) ; g->valid(e); g->next(e)) {
   353 	  Node v=g->tail(e);
   354 	  if (M[v] && (*flow)[e] < (*capacity)[e] ) {
   355 	    queue.push(v);
   356 	    M.set(v, false);
   357 	  }
   358 	}
   359 
   360 	OutEdgeIt f;
   361 	for(g->first(f,w) ; g->valid(f); g->next(f)) {
   362 	  Node v=g->head(f);
   363 	  if (M[v] && (*flow)[f] > 0 ) {
   364 	    queue.push(v);
   365 	    M.set(v, false);
   366 	  }
   367 	}
   368       }
   369     }
   370 
   371     ///Returns a minimum value cut.
   372 
   373     ///Sets \c M to the characteristic vector of a minimum value cut.
   374     ///\pre M should be a node map of bools initialized to false.
   375     ///\pre \c flow must be a maximum flow.    
   376     template<typename CutMap>
   377     void minCut(CutMap& M) const { minMinCut(M); }
   378 
   379     ///Resets the source node to \c _s.
   380 
   381     ///Resets the source node to \c _s.
   382     /// 
   383     void resetSource(Node _s) { s=_s; status=AFTER_NOTHING; }
   384 
   385     ///Resets the target node to \c _t.
   386 
   387     ///Resets the target node to \c _t.
   388     ///
   389     void resetTarget(Node _t) { t=_t; status=AFTER_NOTHING; }
   390 
   391     /// Resets the edge map of the capacities to _cap.
   392 
   393     /// Resets the edge map of the capacities to _cap.
   394     /// 
   395     void resetCap(const CapMap& _cap) { capacity=&_cap; status=AFTER_NOTHING; }
   396 
   397     /// Resets the edge map of the flows to _flow.
   398 
   399     /// Resets the edge map of the flows to _flow.
   400     /// 
   401     void resetFlow(FlowMap& _flow) { flow=&_flow; status=AFTER_NOTHING; }
   402 
   403 
   404   private:
   405 
   406     int push(Node w, VecStack& active) {
   407 
   408       int lev=level[w];
   409       Num exc=excess[w];
   410       int newlevel=n;       //bound on the next level of w
   411 
   412       OutEdgeIt e;
   413       for(g->first(e,w); g->valid(e); g->next(e)) {
   414 
   415 	if ( (*flow)[e] >= (*capacity)[e] ) continue;
   416 	Node v=g->head(e);
   417 
   418 	if( lev > level[v] ) { //Push is allowed now
   419 
   420 	  if ( excess[v]<=0 && v!=t && v!=s ) {
   421 	    int lev_v=level[v];
   422 	    active[lev_v].push(v);
   423 	  }
   424 
   425 	  Num cap=(*capacity)[e];
   426 	  Num flo=(*flow)[e];
   427 	  Num remcap=cap-flo;
   428 
   429 	  if ( remcap >= exc ) { //A nonsaturating push.
   430 
   431 	    flow->set(e, flo+exc);
   432 	    excess.set(v, excess[v]+exc);
   433 	    exc=0;
   434 	    break;
   435 
   436 	  } else { //A saturating push.
   437 	    flow->set(e, cap);
   438 	    excess.set(v, excess[v]+remcap);
   439 	    exc-=remcap;
   440 	  }
   441 	} else if ( newlevel > level[v] ) newlevel = level[v];
   442       } //for out edges wv
   443 
   444       if ( exc > 0 ) {
   445 	InEdgeIt e;
   446 	for(g->first(e,w); g->valid(e); g->next(e)) {
   447 
   448 	  if( (*flow)[e] <= 0 ) continue;
   449 	  Node v=g->tail(e);
   450 
   451 	  if( lev > level[v] ) { //Push is allowed now
   452 
   453 	    if ( excess[v]<=0 && v!=t && v!=s ) {
   454 	      int lev_v=level[v];
   455 	      active[lev_v].push(v);
   456 	    }
   457 
   458 	    Num flo=(*flow)[e];
   459 
   460 	    if ( flo >= exc ) { //A nonsaturating push.
   461 
   462 	      flow->set(e, flo-exc);
   463 	      excess.set(v, excess[v]+exc);
   464 	      exc=0;
   465 	      break;
   466 	    } else {  //A saturating push.
   467 
   468 	      excess.set(v, excess[v]+flo);
   469 	      exc-=flo;
   470 	      flow->set(e,0);
   471 	    }
   472 	  } else if ( newlevel > level[v] ) newlevel = level[v];
   473 	} //for in edges vw
   474 
   475       } // if w still has excess after the out edge for cycle
   476 
   477       excess.set(w, exc);
   478 
   479       return newlevel;
   480     }
   481 
   482 
   483     void preflowPreproc(FlowEnum fe, VecStack& active,
   484 			VecNode& level_list, NNMap& left, NNMap& right)
   485     {
   486       std::queue<Node> bfs_queue;
   487 
   488       switch (fe) {
   489       case NO_FLOW:   //flow is already set to const zero in this case
   490       case ZERO_FLOW:
   491 	{
   492 	  //Reverse_bfs from t, to find the starting level.
   493 	  level.set(t,0);
   494 	  bfs_queue.push(t);
   495 
   496 	  while (!bfs_queue.empty()) {
   497 
   498 	    Node v=bfs_queue.front();
   499 	    bfs_queue.pop();
   500 	    int l=level[v]+1;
   501 
   502 	    InEdgeIt e;
   503 	    for(g->first(e,v); g->valid(e); g->next(e)) {
   504 	      Node w=g->tail(e);
   505 	      if ( level[w] == n && w != s ) {
   506 		bfs_queue.push(w);
   507 		Node first=level_list[l];
   508 		if ( g->valid(first) ) left.set(first,w);
   509 		right.set(w,first);
   510 		level_list[l]=w;
   511 		level.set(w, l);
   512 	      }
   513 	    }
   514 	  }
   515 
   516 	  //the starting flow
   517 	  OutEdgeIt e;
   518 	  for(g->first(e,s); g->valid(e); g->next(e))
   519 	    {
   520 	      Num c=(*capacity)[e];
   521 	      if ( c <= 0 ) continue;
   522 	      Node w=g->head(e);
   523 	      if ( level[w] < n ) {
   524 		if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
   525 		flow->set(e, c);
   526 		excess.set(w, excess[w]+c);
   527 	      }
   528 	    }
   529 	  break;
   530 	}
   531 
   532       case GEN_FLOW:
   533       case PRE_FLOW:
   534 	{
   535 	  //Reverse_bfs from t in the residual graph,
   536 	  //to find the starting level.
   537 	  level.set(t,0);
   538 	  bfs_queue.push(t);
   539 
   540 	  while (!bfs_queue.empty()) {
   541 
   542 	    Node v=bfs_queue.front();
   543 	    bfs_queue.pop();
   544 	    int l=level[v]+1;
   545 
   546 	    InEdgeIt e;
   547 	    for(g->first(e,v); g->valid(e); g->next(e)) {
   548 	      if ( (*capacity)[e] <= (*flow)[e] ) continue;
   549 	      Node w=g->tail(e);
   550 	      if ( level[w] == n && w != s ) {
   551 		bfs_queue.push(w);
   552 		Node first=level_list[l];
   553 		if ( g->valid(first) ) left.set(first,w);
   554 		right.set(w,first);
   555 		level_list[l]=w;
   556 		level.set(w, l);
   557 	      }
   558 	    }
   559 
   560 	    OutEdgeIt f;
   561 	    for(g->first(f,v); g->valid(f); g->next(f)) {
   562 	      if ( 0 >= (*flow)[f] ) continue;
   563 	      Node w=g->head(f);
   564 	      if ( level[w] == n && w != s ) {
   565 		bfs_queue.push(w);
   566 		Node first=level_list[l];
   567 		if ( g->valid(first) ) left.set(first,w);
   568 		right.set(w,first);
   569 		level_list[l]=w;
   570 		level.set(w, l);
   571 	      }
   572 	    }
   573 	  }
   574 
   575 
   576 	  //the starting flow
   577 	  OutEdgeIt e;
   578 	  for(g->first(e,s); g->valid(e); g->next(e))
   579 	    {
   580 	      Num rem=(*capacity)[e]-(*flow)[e];
   581 	      if ( rem <= 0 ) continue;
   582 	      Node w=g->head(e);
   583 	      if ( level[w] < n ) {
   584 		if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
   585 		flow->set(e, (*capacity)[e]);
   586 		excess.set(w, excess[w]+rem);
   587 	      }
   588 	    }
   589 
   590 	  InEdgeIt f;
   591 	  for(g->first(f,s); g->valid(f); g->next(f))
   592 	    {
   593 	      if ( (*flow)[f] <= 0 ) continue;
   594 	      Node w=g->tail(f);
   595 	      if ( level[w] < n ) {
   596 		if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
   597 		excess.set(w, excess[w]+(*flow)[f]);
   598 		flow->set(f, 0);
   599 	      }
   600 	    }
   601 	  break;
   602 	} //case PRE_FLOW
   603       }
   604     } //preflowPreproc
   605 
   606 
   607 
   608     void relabel(Node w, int newlevel, VecStack& active,
   609 		 VecNode& level_list, NNMap& left,
   610 		 NNMap& right, int& b, int& k, bool what_heur )
   611     {
   612 
   613       Num lev=level[w];
   614 
   615       Node right_n=right[w];
   616       Node left_n=left[w];
   617 
   618       //unlacing starts
   619       if ( g->valid(right_n) ) {
   620 	if ( g->valid(left_n) ) {
   621 	  right.set(left_n, right_n);
   622 	  left.set(right_n, left_n);
   623 	} else {
   624 	  level_list[lev]=right_n;
   625 	  left.set(right_n, INVALID);
   626 	}
   627       } else {
   628 	if ( g->valid(left_n) ) {
   629 	  right.set(left_n, INVALID);
   630 	} else {
   631 	  level_list[lev]=INVALID;
   632 	}
   633       }
   634       //unlacing ends
   635 
   636       if ( !g->valid(level_list[lev]) ) {
   637 
   638 	//gapping starts
   639 	for (int i=lev; i!=k ; ) {
   640 	  Node v=level_list[++i];
   641 	  while ( g->valid(v) ) {
   642 	    level.set(v,n);
   643 	    v=right[v];
   644 	  }
   645 	  level_list[i]=INVALID;
   646 	  if ( !what_heur ) {
   647 	    while ( !active[i].empty() ) {
   648 	      active[i].pop();    //FIXME: ezt szebben kene
   649 	    }
   650 	  }
   651 	}
   652 
   653 	level.set(w,n);
   654 	b=lev-1;
   655 	k=b;
   656 	//gapping ends
   657 
   658       } else {
   659 
   660 	if ( newlevel == n ) level.set(w,n);
   661 	else {
   662 	  level.set(w,++newlevel);
   663 	  active[newlevel].push(w);
   664 	  if ( what_heur ) b=newlevel;
   665 	  if ( k < newlevel ) ++k;      //now k=newlevel
   666 	  Node first=level_list[newlevel];
   667 	  if ( g->valid(first) ) left.set(first,w);
   668 	  right.set(w,first);
   669 	  left.set(w,INVALID);
   670 	  level_list[newlevel]=w;
   671 	}
   672       }
   673 
   674     } //relabel
   675 
   676 
   677     template<typename MapGraphWrapper>
   678     class DistanceMap {
   679     protected:
   680       const MapGraphWrapper* g;
   681       typename MapGraphWrapper::template NodeMap<int> dist;
   682     public:
   683       DistanceMap(MapGraphWrapper& _g) : g(&_g), dist(*g, g->nodeNum()) { }
   684       void set(const typename MapGraphWrapper::Node& n, int a) {
   685 	dist.set(n, a);
   686       }
   687       int operator[](const typename MapGraphWrapper::Node& n) const { 
   688 	return dist[n]; 
   689       }
   690       //       int get(const typename MapGraphWrapper::Node& n) const {
   691       // 	return dist[n]; }
   692       //       bool get(const typename MapGraphWrapper::Edge& e) const {
   693       // 	return (dist.get(g->tail(e))<dist.get(g->head(e))); }
   694       bool operator[](const typename MapGraphWrapper::Edge& e) const {
   695 	return (dist[g->tail(e)]<dist[g->head(e)]);
   696       }
   697     };
   698 
   699   };
   700 
   701 
   702   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
   703   void MaxFlow<Graph, Num, CapMap, FlowMap>::preflowPhase1(FlowEnum fe)
   704   {
   705 
   706     int heur0=(int)(H0*n);  //time while running 'bound decrease'
   707     int heur1=(int)(H1*n);  //time while running 'highest label'
   708     int heur=heur1;         //starting time interval (#of relabels)
   709     int numrelabel=0;
   710 
   711     bool what_heur=1;
   712     //It is 0 in case 'bound decrease' and 1 in case 'highest label'
   713 
   714     bool end=false;
   715     //Needed for 'bound decrease', true means no active nodes are above bound
   716     //b.
   717 
   718     int k=n-2;  //bound on the highest level under n containing a node
   719     int b=k;    //bound on the highest level under n of an active node
   720 
   721     VecStack active(n);
   722 
   723     NNMap left(*g, INVALID);
   724     NNMap right(*g, INVALID);
   725     VecNode level_list(n,INVALID);
   726     //List of the nodes in level i<n, set to n.
   727 
   728     NodeIt v;
   729     for(g->first(v); g->valid(v); g->next(v)) level.set(v,n);
   730     //setting each node to level n
   731 
   732     if ( fe == NO_FLOW ) {
   733       EdgeIt e;
   734       for(g->first(e); g->valid(e); g->next(e)) flow->set(e,0);
   735     }
   736 
   737     switch (fe) { //computing the excess
   738     case PRE_FLOW:
   739       {
   740 	NodeIt v;
   741 	for(g->first(v); g->valid(v); g->next(v)) {
   742 	  Num exc=0;
   743 
   744 	  InEdgeIt e;
   745 	  for(g->first(e,v); g->valid(e); g->next(e)) exc+=(*flow)[e];
   746 	  OutEdgeIt f;
   747 	  for(g->first(f,v); g->valid(f); g->next(f)) exc-=(*flow)[f];
   748 
   749 	  excess.set(v,exc);
   750 
   751 	  //putting the active nodes into the stack
   752 	  int lev=level[v];
   753 	  if ( exc > 0 && lev < n && v != t ) active[lev].push(v);
   754 	}
   755 	break;
   756       }
   757     case GEN_FLOW:
   758       {
   759 	NodeIt v;
   760 	for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0);
   761 
   762 	Num exc=0;
   763 	InEdgeIt e;
   764 	for(g->first(e,t); g->valid(e); g->next(e)) exc+=(*flow)[e];
   765 	OutEdgeIt f;
   766 	for(g->first(f,t); g->valid(f); g->next(f)) exc-=(*flow)[f];
   767 	excess.set(t,exc);
   768 	break;
   769       }
   770     case ZERO_FLOW:
   771     case NO_FLOW:
   772       {
   773 	NodeIt v;
   774         for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0);
   775 	break;
   776       }
   777     }
   778 
   779     preflowPreproc(fe, active, level_list, left, right);
   780     //End of preprocessing
   781 
   782 
   783     //Push/relabel on the highest level active nodes.
   784     while ( true ) {
   785       if ( b == 0 ) {
   786 	if ( !what_heur && !end && k > 0 ) {
   787 	  b=k;
   788 	  end=true;
   789 	} else break;
   790       }
   791 
   792       if ( active[b].empty() ) --b;
   793       else {
   794 	end=false;
   795 	Node w=active[b].top();
   796 	active[b].pop();
   797 	int newlevel=push(w,active);
   798 	if ( excess[w] > 0 ) relabel(w, newlevel, active, level_list,
   799 				     left, right, b, k, what_heur);
   800 
   801 	++numrelabel;
   802 	if ( numrelabel >= heur ) {
   803 	  numrelabel=0;
   804 	  if ( what_heur ) {
   805 	    what_heur=0;
   806 	    heur=heur0;
   807 	    end=false;
   808 	  } else {
   809 	    what_heur=1;
   810 	    heur=heur1;
   811 	    b=k;
   812 	  }
   813 	}
   814       }
   815     }
   816 
   817     status=AFTER_PRE_FLOW_PHASE_1;
   818   }
   819 
   820 
   821 
   822   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
   823   void MaxFlow<Graph, Num, CapMap, FlowMap>::preflowPhase2()
   824   {
   825 
   826     int k=n-2;  //bound on the highest level under n containing a node
   827     int b=k;    //bound on the highest level under n of an active node
   828 
   829     VecStack active(n);
   830     level.set(s,0);
   831     std::queue<Node> bfs_queue;
   832     bfs_queue.push(s);
   833 
   834     while (!bfs_queue.empty()) {
   835 
   836       Node v=bfs_queue.front();
   837       bfs_queue.pop();
   838       int l=level[v]+1;
   839 
   840       InEdgeIt e;
   841       for(g->first(e,v); g->valid(e); g->next(e)) {
   842 	if ( (*capacity)[e] <= (*flow)[e] ) continue;
   843 	Node u=g->tail(e);
   844 	if ( level[u] >= n ) {
   845 	  bfs_queue.push(u);
   846 	  level.set(u, l);
   847 	  if ( excess[u] > 0 ) active[l].push(u);
   848 	}
   849       }
   850 
   851       OutEdgeIt f;
   852       for(g->first(f,v); g->valid(f); g->next(f)) {
   853 	if ( 0 >= (*flow)[f] ) continue;
   854 	Node u=g->head(f);
   855 	if ( level[u] >= n ) {
   856 	  bfs_queue.push(u);
   857 	  level.set(u, l);
   858 	  if ( excess[u] > 0 ) active[l].push(u);
   859 	}
   860       }
   861     }
   862     b=n-2;
   863 
   864     while ( true ) {
   865 
   866       if ( b == 0 ) break;
   867 
   868       if ( active[b].empty() ) --b;
   869       else {
   870 	Node w=active[b].top();
   871 	active[b].pop();
   872 	int newlevel=push(w,active);
   873 
   874 	//relabel
   875 	if ( excess[w] > 0 ) {
   876 	  level.set(w,++newlevel);
   877 	  active[newlevel].push(w);
   878 	  b=newlevel;
   879 	}
   880       }  // if stack[b] is nonempty
   881     } // while(true)
   882 
   883     status=AFTER_PRE_FLOW_PHASE_2;
   884   }
   885 
   886 
   887 
   888   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
   889   bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnShortestPath()
   890   {
   891     ResGW res_graph(*g, *capacity, *flow);
   892     bool _augment=false;
   893 
   894     //ReachedMap level(res_graph);
   895     FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
   896     BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
   897     bfs.pushAndSetReached(s);
   898 
   899     typename ResGW::template NodeMap<ResGWEdge> pred(res_graph);
   900     pred.set(s, INVALID);
   901 
   902     typename ResGW::template NodeMap<Num> free(res_graph);
   903 
   904     //searching for augmenting path
   905     while ( !bfs.finished() ) {
   906       ResGWOutEdgeIt e=bfs;
   907       if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
   908 	Node v=res_graph.tail(e);
   909 	Node w=res_graph.head(e);
   910 	pred.set(w, e);
   911 	if (res_graph.valid(pred[v])) {
   912 	  free.set(w, std::min(free[v], res_graph.resCap(e)));
   913 	} else {
   914 	  free.set(w, res_graph.resCap(e));
   915 	}
   916 	if (res_graph.head(e)==t) { _augment=true; break; }
   917       }
   918 
   919       ++bfs;
   920     } //end of searching augmenting path
   921 
   922     if (_augment) {
   923       Node n=t;
   924       Num augment_value=free[t];
   925       while (res_graph.valid(pred[n])) {
   926 	ResGWEdge e=pred[n];
   927 	res_graph.augment(e, augment_value);
   928 	n=res_graph.tail(e);
   929       }
   930     }
   931 
   932     status=AFTER_AUGMENTING;
   933     return _augment;
   934   }
   935 
   936 
   937   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
   938   bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnShortestPath2()
   939   {
   940     ResGW res_graph(*g, *capacity, *flow);
   941     bool _augment=false;
   942 
   943     if (status!=AFTER_AUGMENTING) {
   944       FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, -1); 
   945       number_of_augmentations=0;
   946     } else {
   947       ++number_of_augmentations;
   948     }
   949     TrickyReachedMap<ReachedMap> 
   950       tricky_reached_map(level, number_of_augmentations);
   951     //ReachedMap level(res_graph);
   952 //    FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
   953     BfsIterator<ResGW, TrickyReachedMap<ReachedMap> > 
   954       bfs(res_graph, tricky_reached_map);
   955     bfs.pushAndSetReached(s);
   956 
   957     typename ResGW::template NodeMap<ResGWEdge> pred(res_graph);
   958     pred.set(s, INVALID);
   959 
   960     typename ResGW::template NodeMap<Num> free(res_graph);
   961 
   962     //searching for augmenting path
   963     while ( !bfs.finished() ) {
   964       ResGWOutEdgeIt e=bfs;
   965       if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
   966 	Node v=res_graph.tail(e);
   967 	Node w=res_graph.head(e);
   968 	pred.set(w, e);
   969 	if (res_graph.valid(pred[v])) {
   970 	  free.set(w, std::min(free[v], res_graph.resCap(e)));
   971 	} else {
   972 	  free.set(w, res_graph.resCap(e));
   973 	}
   974 	if (res_graph.head(e)==t) { _augment=true; break; }
   975       }
   976 
   977       ++bfs;
   978     } //end of searching augmenting path
   979 
   980     if (_augment) {
   981       Node n=t;
   982       Num augment_value=free[t];
   983       while (res_graph.valid(pred[n])) {
   984 	ResGWEdge e=pred[n];
   985 	res_graph.augment(e, augment_value);
   986 	n=res_graph.tail(e);
   987       }
   988     }
   989 
   990     status=AFTER_AUGMENTING;
   991     return _augment;
   992   }
   993 
   994 
   995   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
   996   template<typename MutableGraph>
   997   bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow()
   998   {
   999     typedef MutableGraph MG;
  1000     bool _augment=false;
  1001 
  1002     ResGW res_graph(*g, *capacity, *flow);
  1003 
  1004     //bfs for distances on the residual graph
  1005     //ReachedMap level(res_graph);
  1006     FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
  1007     BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
  1008     bfs.pushAndSetReached(s);
  1009     typename ResGW::template NodeMap<int>
  1010       dist(res_graph); //filled up with 0's
  1011 
  1012     //F will contain the physical copy of the residual graph
  1013     //with the set of edges which are on shortest paths
  1014     MG F;
  1015     typename ResGW::template NodeMap<typename MG::Node>
  1016       res_graph_to_F(res_graph);
  1017     {
  1018       typename ResGW::NodeIt n;
  1019       for(res_graph.first(n); res_graph.valid(n); res_graph.next(n)) {
  1020 	res_graph_to_F.set(n, F.addNode());
  1021       }
  1022     }
  1023 
  1024     typename MG::Node sF=res_graph_to_F[s];
  1025     typename MG::Node tF=res_graph_to_F[t];
  1026     typename MG::template EdgeMap<ResGWEdge> original_edge(F);
  1027     typename MG::template EdgeMap<Num> residual_capacity(F);
  1028 
  1029     while ( !bfs.finished() ) {
  1030       ResGWOutEdgeIt e=bfs;
  1031       if (res_graph.valid(e)) {
  1032 	if (bfs.isBNodeNewlyReached()) {
  1033 	  dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1);
  1034 	  typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)],
  1035 					res_graph_to_F[res_graph.head(e)]);
  1036 	  original_edge.update();
  1037 	  original_edge.set(f, e);
  1038 	  residual_capacity.update();
  1039 	  residual_capacity.set(f, res_graph.resCap(e));
  1040 	} else {
  1041 	  if (dist[res_graph.head(e)]==(dist[res_graph.tail(e)]+1)) {
  1042 	    typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)],
  1043 					  res_graph_to_F[res_graph.head(e)]);
  1044 	    original_edge.update();
  1045 	    original_edge.set(f, e);
  1046 	    residual_capacity.update();
  1047 	    residual_capacity.set(f, res_graph.resCap(e));
  1048 	  }
  1049 	}
  1050       }
  1051       ++bfs;
  1052     } //computing distances from s in the residual graph
  1053 
  1054     bool __augment=true;
  1055 
  1056     while (__augment) {
  1057       __augment=false;
  1058       //computing blocking flow with dfs
  1059       DfsIterator< MG, typename MG::template NodeMap<bool> > dfs(F);
  1060       typename MG::template NodeMap<typename MG::Edge> pred(F);
  1061       pred.set(sF, INVALID);
  1062       //invalid iterators for sources
  1063 
  1064       typename MG::template NodeMap<Num> free(F);
  1065 
  1066       dfs.pushAndSetReached(sF);
  1067       while (!dfs.finished()) {
  1068 	++dfs;
  1069 	if (F.valid(/*typename MG::OutEdgeIt*/(dfs))) {
  1070 	  if (dfs.isBNodeNewlyReached()) {
  1071 	    typename MG::Node v=F.aNode(dfs);
  1072 	    typename MG::Node w=F.bNode(dfs);
  1073 	    pred.set(w, dfs);
  1074 	    if (F.valid(pred[v])) {
  1075 	      free.set(w, std::min(free[v], residual_capacity[dfs]));
  1076 	    } else {
  1077 	      free.set(w, residual_capacity[dfs]);
  1078 	    }
  1079 	    if (w==tF) {
  1080 	      __augment=true;
  1081 	      _augment=true;
  1082 	      break;
  1083 	    }
  1084 
  1085 	  } else {
  1086 	    F.erase(/*typename MG::OutEdgeIt*/(dfs));
  1087 	  }
  1088 	}
  1089       }
  1090 
  1091       if (__augment) {
  1092 	typename MG::Node n=tF;
  1093 	Num augment_value=free[tF];
  1094 	while (F.valid(pred[n])) {
  1095 	  typename MG::Edge e=pred[n];
  1096 	  res_graph.augment(original_edge[e], augment_value);
  1097 	  n=F.tail(e);
  1098 	  if (residual_capacity[e]==augment_value)
  1099 	    F.erase(e);
  1100 	  else
  1101 	    residual_capacity.set(e, residual_capacity[e]-augment_value);
  1102 	}
  1103       }
  1104 
  1105     }
  1106 
  1107     status=AFTER_AUGMENTING;
  1108     return _augment;
  1109   }
  1110 
  1111 
  1112 
  1113 
  1114   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
  1115   bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow2()
  1116   {
  1117     bool _augment=false;
  1118 
  1119     ResGW res_graph(*g, *capacity, *flow);
  1120 
  1121     //ReachedMap level(res_graph);
  1122     FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
  1123     BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
  1124 
  1125     bfs.pushAndSetReached(s);
  1126     DistanceMap<ResGW> dist(res_graph);
  1127     while ( !bfs.finished() ) {
  1128       ResGWOutEdgeIt e=bfs;
  1129       if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
  1130 	dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1);
  1131       }
  1132       ++bfs;
  1133     } //computing distances from s in the residual graph
  1134 
  1135       //Subgraph containing the edges on some shortest paths
  1136     ConstMap<typename ResGW::Node, bool> true_map(true);
  1137     typedef SubGraphWrapper<ResGW, ConstMap<typename ResGW::Node, bool>,
  1138       DistanceMap<ResGW> > FilterResGW;
  1139     FilterResGW filter_res_graph(res_graph, true_map, dist);
  1140 
  1141     //Subgraph, which is able to delete edges which are already
  1142     //met by the dfs
  1143     typename FilterResGW::template NodeMap<typename FilterResGW::OutEdgeIt>
  1144       first_out_edges(filter_res_graph);
  1145     typename FilterResGW::NodeIt v;
  1146     for(filter_res_graph.first(v); filter_res_graph.valid(v);
  1147 	filter_res_graph.next(v))
  1148       {
  1149  	typename FilterResGW::OutEdgeIt e;
  1150  	filter_res_graph.first(e, v);
  1151  	first_out_edges.set(v, e);
  1152       }
  1153     typedef ErasingFirstGraphWrapper<FilterResGW, typename FilterResGW::
  1154       template NodeMap<typename FilterResGW::OutEdgeIt> > ErasingResGW;
  1155     ErasingResGW erasing_res_graph(filter_res_graph, first_out_edges);
  1156 
  1157     bool __augment=true;
  1158 
  1159     while (__augment) {
  1160 
  1161       __augment=false;
  1162       //computing blocking flow with dfs
  1163       DfsIterator< ErasingResGW,
  1164 	typename ErasingResGW::template NodeMap<bool> >
  1165 	dfs(erasing_res_graph);
  1166       typename ErasingResGW::
  1167 	template NodeMap<typename ErasingResGW::OutEdgeIt>
  1168 	pred(erasing_res_graph);
  1169       pred.set(s, INVALID);
  1170       //invalid iterators for sources
  1171 
  1172       typename ErasingResGW::template NodeMap<Num>
  1173 	free1(erasing_res_graph);
  1174 
  1175       dfs.pushAndSetReached
  1176 	///\bug hugo 0.2
  1177 	(typename ErasingResGW::Node
  1178 	 (typename FilterResGW::Node
  1179 	  (typename ResGW::Node(s)
  1180 	   )
  1181 	  )
  1182 	 );
  1183       while (!dfs.finished()) {
  1184 	++dfs;
  1185 	if (erasing_res_graph.valid(typename ErasingResGW::OutEdgeIt(dfs)))
  1186  	  {
  1187   	    if (dfs.isBNodeNewlyReached()) {
  1188 
  1189  	      typename ErasingResGW::Node v=erasing_res_graph.aNode(dfs);
  1190  	      typename ErasingResGW::Node w=erasing_res_graph.bNode(dfs);
  1191 
  1192  	      pred.set(w, /*typename ErasingResGW::OutEdgeIt*/(dfs));
  1193  	      if (erasing_res_graph.valid(pred[v])) {
  1194  		free1.set
  1195 		  (w, std::min(free1[v], res_graph.resCap
  1196 			       (typename ErasingResGW::OutEdgeIt(dfs))));
  1197  	      } else {
  1198  		free1.set
  1199 		  (w, res_graph.resCap
  1200 		   (typename ErasingResGW::OutEdgeIt(dfs)));
  1201  	      }
  1202 
  1203  	      if (w==t) {
  1204  		__augment=true;
  1205  		_augment=true;
  1206  		break;
  1207  	      }
  1208  	    } else {
  1209  	      erasing_res_graph.erase(dfs);
  1210 	    }
  1211 	  }
  1212       }
  1213 
  1214       if (__augment) {
  1215 	typename ErasingResGW::Node
  1216 	  n=typename FilterResGW::Node(typename ResGW::Node(t));
  1217 	// 	  typename ResGW::NodeMap<Num> a(res_graph);
  1218 	// 	  typename ResGW::Node b;
  1219 	// 	  Num j=a[b];
  1220 	// 	  typename FilterResGW::NodeMap<Num> a1(filter_res_graph);
  1221 	// 	  typename FilterResGW::Node b1;
  1222 	// 	  Num j1=a1[b1];
  1223 	// 	  typename ErasingResGW::NodeMap<Num> a2(erasing_res_graph);
  1224 	// 	  typename ErasingResGW::Node b2;
  1225 	// 	  Num j2=a2[b2];
  1226 	Num augment_value=free1[n];
  1227 	while (erasing_res_graph.valid(pred[n])) {
  1228 	  typename ErasingResGW::OutEdgeIt e=pred[n];
  1229 	  res_graph.augment(e, augment_value);
  1230 	  n=erasing_res_graph.tail(e);
  1231 	  if (res_graph.resCap(e)==0)
  1232 	    erasing_res_graph.erase(e);
  1233 	}
  1234       }
  1235 
  1236     } //while (__augment)
  1237 
  1238     status=AFTER_AUGMENTING;
  1239     return _augment;
  1240   }
  1241 
  1242 
  1243 } //namespace hugo
  1244 
  1245 #endif //HUGO_MAX_FLOW_H
  1246 
  1247 
  1248 
  1249