4 Runs the highest label variant of the preflow push algorithm with 
 
     5 running time O(n^2\sqrt(m)). 
 
     9 void run() : runs the algorithm
 
    11  The following functions should be used after run() was already run.
 
    13 T maxflow() : returns the value of a maximum flow
 
    15 T flowonedge(edge_iterator e) : for a fixed maximum flow x it returns x(e) 
 
    17 edge_property_vector<graph_type, T> allflow() : returns the fixed maximum flow x
 
    19 node_property_vector<graph_type, bool> mincut() : returns a 
 
    20      characteristic vector of a minimum cut. (An empty level 
 
    21      in the algorithm gives a minimum cut.)
 
    24 #ifndef PREFLOW_PUSH_HL_HH
 
    25 #define PREFLOW_PUSH_HL_HH
 
    31 #include <marci_graph_traits.hh>
 
    32 #include <marci_property_vector.hh>
 
    33 #include <reverse_bfs.hh>
 
    37   template <typename graph_type, typename T>
 
    38   class preflow_push_hl {
 
    40     typedef typename graph_traits<graph_type>::node_iterator node_iterator;
 
    41     typedef typename graph_traits<graph_type>::edge_iterator edge_iterator;
 
    42     typedef typename graph_traits<graph_type>::each_node_iterator each_node_iterator;
 
    43     typedef typename graph_traits<graph_type>::out_edge_iterator out_edge_iterator;
 
    44     typedef typename graph_traits<graph_type>::in_edge_iterator in_edge_iterator;
 
    45     typedef typename graph_traits<graph_type>::each_edge_iterator each_edge_iterator;
 
    51     edge_property_vector<graph_type, T> flow;
 
    52     edge_property_vector<graph_type, T>& capacity; 
 
    54     node_property_vector<graph_type, bool> mincutvector;
 
    59     preflow_push_hl(graph_type& _G, node_iterator _s, node_iterator _t, edge_property_vector<graph_type, T>& _capacity) : G(_G), s(_s), t(_t), flow(_G, 0), capacity(_capacity), mincutvector(_G, true) { }
 
    65       The run() function runs the highest label preflow-push, 
 
    66       running time: O(n^2\sqrt(m))
 
    70       node_property_vector<graph_type, int> level(G);         //level of node
 
    71       node_property_vector<graph_type, T> excess(G);          //excess of node
 
    73       int n=number_of(G.first_node());                        //number of nodes 
 
    75       /*b is a bound on the highest level of an active node. In the beginning it is at most n-2.*/
 
    77       std::vector<std::stack<node_iterator> > stack(2*n-1);    //Stack of the active nodes in level i.
 
    82       /*Reverse_bfs from t, to find the starting level.*/
 
    84       reverse_bfs<list_graph> bfs(G, t);
 
    86       for(each_node_iterator v=G.first_node(); v.valid(); ++v) {
 
    87 	level.put(v, bfs.dist(v)); 
 
    88 	//std::cout << "the level of " << v << " is " << bfs.dist(v);
 
    91       /*The level of s is fixed to n*/ 
 
    98       /* Starting flow. It is everywhere 0 at the moment. */
 
   100       for(out_edge_iterator i=G.first_out_edge(s); i.valid(); ++i) 
 
   102 	  node_iterator w=G.head(i);
 
   103 	  flow.put(i, capacity.get(i)); 
 
   104 	  stack[bfs.dist(w)].push(w); 
 
   105 	  excess.put(w, capacity.get(i));
 
   116 	Push/relabel on the highest level active nodes.
 
   119       /*While there exists active node.*/
 
   122 	/*We decrease the bound if there is no active node of level b.*/
 
   123 	if (stack[b].empty()) {
 
   127 	  node_iterator w=stack[b].top();    //w is the highest label active node.
 
   128 	  stack[b].pop();                    //We delete w from the stack.
 
   130 	  int newlevel=2*n-2;                   //In newlevel we maintain the next level of w.
 
   132 	  for(out_edge_iterator e=G.first_out_edge(w); e.valid(); ++e) {
 
   133 	    node_iterator v=G.head(e);
 
   134 	    /*e is the edge wv.*/
 
   136 	    if (flow.get(e)<capacity.get(e)) {              
 
   137 	      /*e is an edge of the residual graph */
 
   139 	      if(level.get(w)==level.get(v)+1) {      
 
   140 		/*Push is allowed now*/
 
   142 		if (capacity.get(e)-flow.get(e) > excess.get(w)) {       
 
   143 		  /*A nonsaturating push.*/
 
   145 		  if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); 
 
   146 		  /*v becomes active.*/
 
   148 		  flow.put(e, flow.get(e)+excess.get(w));
 
   149 		  excess.put(v, excess.get(v)+excess.get(w));
 
   151 		  //std::cout << w << " " << v <<" elore elen nonsat pump "  << std::endl;
 
   154 		  /*A saturating push.*/
 
   156 		  if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); 
 
   157 		  /*v becomes active.*/
 
   159 		  excess.put(v, excess.get(v)+capacity.get(e)-flow.get(e));
 
   160 		  excess.put(w, excess.get(w)-capacity.get(e)+flow.get(e));
 
   161 		  flow.put(e, capacity.get(e));
 
   162 		  //std::cout << w<<" " <<v<<" elore elen sat pump "   << std::endl;
 
   163 		  if (excess.get(w)==0) break;
 
   164 		  /*If w is not active any more, then we go on to the next node.*/
 
   166 		} // if (capacity.get(e)-flow.get(e) > excess.get(w))
 
   167 	      } // if(level.get(w)==level.get(v)+1)
 
   169 	      else {newlevel = newlevel < level.get(v) ? newlevel : level.get(v);}
 
   171 	    } //if (flow.get(e)<capacity.get(e))
 
   173 	  } //for(out_edge_iterator e=G.first_out_edge(w); e.valid(); ++e) 
 
   177 	  for(in_edge_iterator e=G.first_in_edge(w); e.valid(); ++e) {
 
   178 	    node_iterator v=G.tail(e);
 
   179 	    /*e is the edge vw.*/
 
   181 	    if (excess.get(w)==0) break;
 
   182 	    /*It may happen, that w became inactive in the first for cycle.*/		
 
   184 	      /*e is an edge of the residual graph */
 
   186 	      if(level.get(w)==level.get(v)+1) {  
 
   187 		/*Push is allowed now*/
 
   189 		if (flow.get(e) > excess.get(w)) { 
 
   190 		  /*A nonsaturating push.*/
 
   192 		  if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); 
 
   193 		  /*v becomes active.*/
 
   195 		  flow.put(e, flow.get(e)-excess.get(w));
 
   196 		  excess.put(v, excess.get(v)+excess.get(w));
 
   198 		  //std::cout << v << " " << w << " vissza elen nonsat pump "     << std::endl;
 
   201 		  /*A saturating push.*/
 
   203 		  if (excess.get(v)==0 && v != s) stack[level.get(v)].push(v); 
 
   204 		  /*v becomes active.*/
 
   206 		  excess.put(v, excess.get(v)+flow.get(e));
 
   207 		  excess.put(w, excess.get(w)-flow.get(e));
 
   209 		  //std::cout << v <<" " << w << " vissza elen sat pump "     << std::endl;
 
   210 		  if (excess.get(w)==0) { break;}
 
   211 		} //if (flow.get(e) > excess.get(v)) 
 
   212 	      } //if(level.get(w)==level.get(v)+1)
 
   214 	      else {newlevel = newlevel < level.get(v) ? newlevel : level.get(v);}
 
   217 	    } //if (flow.get(e)>0)
 
   222 	  if (excess.get(w)>0) {
 
   223 	    level.put(w,++newlevel);
 
   224 	    stack[newlevel].push(w);
 
   226 	    //std::cout << "The new level of " << w << " is "<< newlevel <<std::endl; 
 
   234       value = excess.get(t);
 
   247       Returns the maximum value of a flow.
 
   257       For the maximum flow x found by the algorithm, it returns the flow value on edge e, i.e. x(e). 
 
   260     T flowonedge(edge_iterator e) {
 
   267       Returns the maximum flow x found by the algorithm.
 
   270     edge_property_vector<graph_type, T> allflow() {
 
   277       Returns a minimum cut by using a reverse bfs from t in the residual graph.
 
   280     node_property_vector<graph_type, bool> mincut() {
 
   282       std::queue<node_iterator> queue;
 
   284       mincutvector.put(t,false);      
 
   287       while (!queue.empty()) {
 
   288         node_iterator w=queue.front();
 
   291 	for(in_edge_iterator e=G.first_in_edge(w) ; e.valid(); ++e) {
 
   292 	  node_iterator v=G.tail(e);
 
   293 	  if (mincutvector.get(v) && flow.get(e) < capacity.get(e) ) {
 
   295 	    mincutvector.put(v, false);
 
   299 	for(out_edge_iterator e=G.first_out_edge(w) ; e.valid(); ++e) {
 
   300 	  node_iterator v=G.head(e);
 
   301 	  if (mincutvector.get(v) && flow.get(e) > 0 ) {
 
   303 	    mincutvector.put(v, false);