Removed some unnecessary files.
     2  * src/lemon/bfs.h - Part of LEMON, a generic C++ optimization library
 
     4  * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
 
     5  * (Egervary Combinatorial Optimization Research Group, EGRES).
 
     7  * Permission to use, modify and distribute this software is granted
 
     8  * provided that this copyright notice appears in all copies. For
 
     9  * precise terms see the accompanying LICENSE file.
 
    11  * This software is provided "AS IS" with no warranty of any kind,
 
    12  * express or implied, and with no claim as to its suitability for any
 
    22 ///\brief Bfs algorithm.
 
    24 ///\todo Revise Manual.
 
    26 #include <lemon/bin_heap.h>
 
    27 #include <lemon/invalid.h>
 
    28 #include <lemon/graph_utils.h>
 
    32 /// \addtogroup flowalgs
 
    35   ///%BFS algorithm class.
 
    37   ///This class provides an efficient implementation of %BFS algorithm.
 
    38   ///\param GR The graph type the algorithm runs on.
 
    39   ///This class does the same as Dijkstra does with constant 1 edge length,
 
    42   ///\author Alpar Juttner
 
    45   template <typename GR>
 
    47   template <typename GR>
 
    51     ///The type of the underlying graph.
 
    54     typedef typename Graph::Node Node;
 
    56     typedef typename Graph::NodeIt NodeIt;
 
    58     typedef typename Graph::Edge Edge;
 
    60     typedef typename Graph::OutEdgeIt OutEdgeIt;
 
    62     ///\brief The type of the map that stores the last
 
    63     ///edges of the shortest paths.
 
    64     typedef typename Graph::template NodeMap<Edge> PredMap;
 
    65     ///\brief The type of the map that stores the last but one
 
    66     ///nodes of the shortest paths.
 
    67     typedef typename Graph::template NodeMap<Node> PredNodeMap;
 
    68     ///The type of the map that stores the dists of the nodes.
 
    69     typedef typename Graph::template NodeMap<int> DistMap;
 
    72     /// Pointer to the underlying graph.
 
    74     ///Pointer to the map of predecessors edges.
 
    76     ///Indicates if \ref predecessor is locally allocated (\c true) or not.
 
    77     bool local_predecessor;
 
    78     ///Pointer to the map of predecessors nodes.
 
    79     PredNodeMap *pred_node;
 
    80     ///Indicates if \ref pred_node is locally allocated (\c true) or not.
 
    82     ///Pointer to the map of distances.
 
    84     ///Indicates if \ref distance is locally allocated (\c true) or not.
 
    87     ///The source node of the last execution.
 
    91     ///Initializes the maps.
 
    95 	local_predecessor = true;
 
    96 	predecessor = new PredMap(*G);
 
    99 	local_pred_node = true;
 
   100 	pred_node = new PredNodeMap(*G);
 
   103 	local_distance = true;
 
   104 	distance = new DistMap(*G);
 
   111     ///\param _G the graph the algorithm will run on.
 
   113     Bfs(const Graph& _G) :
 
   115       predecessor(NULL), local_predecessor(false),
 
   116       pred_node(NULL), local_pred_node(false),
 
   117       distance(NULL), local_distance(false)
 
   123       if(local_predecessor) delete predecessor;
 
   124       if(local_pred_node) delete pred_node;
 
   125       if(local_distance) delete distance;
 
   128     ///Sets the map storing the predecessor edges.
 
   130     ///Sets the map storing the predecessor edges.
 
   131     ///If you don't use this function before calling \ref run(),
 
   132     ///it will allocate one. The destuctor deallocates this
 
   133     ///automatically allocated map, of course.
 
   134     ///\return <tt> (*this) </tt>
 
   135     Bfs &setPredMap(PredMap &m) 
 
   137       if(local_predecessor) {
 
   139 	local_predecessor=false;
 
   145     ///Sets the map storing the predecessor nodes.
 
   147     ///Sets the map storing the predecessor nodes.
 
   148     ///If you don't use this function before calling \ref run(),
 
   149     ///it will allocate one. The destuctor deallocates this
 
   150     ///automatically allocated map, of course.
 
   151     ///\return <tt> (*this) </tt>
 
   152     Bfs &setPredNodeMap(PredNodeMap &m) 
 
   154       if(local_pred_node) {
 
   156 	local_pred_node=false;
 
   162     ///Sets the map storing the distances calculated by the algorithm.
 
   164     ///Sets the map storing the distances calculated by the algorithm.
 
   165     ///If you don't use this function before calling \ref run(),
 
   166     ///it will allocate one. The destuctor deallocates this
 
   167     ///automatically allocated map, of course.
 
   168     ///\return <tt> (*this) </tt>
 
   169     Bfs &setDistMap(DistMap &m) 
 
   173 	local_distance=false;
 
   179   ///Runs %BFS algorithm from node \c s.
 
   181   ///This method runs the %BFS algorithm from a root node \c s
 
   184   ///shortest path to each node. The algorithm computes
 
   186   ///- The distance of each node from the root.
 
   194       for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
 
   195 	predecessor->set(u,INVALID);
 
   196 	pred_node->set(u,INVALID);
 
   199       int N = countNodes(*G);
 
   200       std::vector<typename Graph::Node> Q(N);
 
   209 	int d= (*distance)[n]+1;
 
   211 	for(OutEdgeIt e(*G,n);e!=INVALID;++e)
 
   212 	  if((m=G->target(e))!=s && (*predecessor)[m]==INVALID) {
 
   214 	    predecessor->set(m,e);
 
   221     ///The distance of a node from the root.
 
   223     ///Returns the distance of a node from the root.
 
   224     ///\pre \ref run() must be called before using this function.
 
   225     ///\warning If node \c v in unreachable from the root the return value
 
   226     ///of this funcion is undefined.
 
   227     int dist(Node v) const { return (*distance)[v]; }
 
   229     ///Returns the 'previous edge' of the %BFS path tree.
 
   231     ///For a node \c v it returns the 'previous edge' of the %BFS tree,
 
   232     ///i.e. it returns the last edge of a shortest path from the root to \c
 
   233     ///v. It is \ref INVALID
 
   234     ///if \c v is unreachable from the root or if \c v=s. The
 
   235     ///%BFS tree used here is equal to the %BFS tree used in
 
   236     ///\ref predNode(Node v).  \pre \ref run() must be called before using
 
   238     Edge pred(Node v) const { return (*predecessor)[v]; }
 
   240     ///Returns the 'previous node' of the %BFS tree.
 
   242     ///For a node \c v it returns the 'previous node' on the %BFS tree,
 
   243     ///i.e. it returns the last but one node from a shortest path from the
 
   244     ///root to \c /v. It is INVALID if \c v is unreachable from the root or if
 
   245     ///\c v=s. The shortest path tree used here is equal to the %BFS
 
   246     ///tree used in \ref pred(Node v).  \pre \ref run() must be called before
 
   247     ///using this function.
 
   248     Node predNode(Node v) const { return (*pred_node)[v]; }
 
   250     ///Returns a reference to the NodeMap of distances.
 
   252     ///Returns a reference to the NodeMap of distances. \pre \ref run() must
 
   253     ///be called before using this function.
 
   254     const DistMap &distMap() const { return *distance;}
 
   256     ///Returns a reference to the %BFS tree map.
 
   258     ///Returns a reference to the NodeMap of the edges of the
 
   260     ///\pre \ref run() must be called before using this function.
 
   261     const PredMap &predMap() const { return *predecessor;}
 
   263     ///Returns a reference to the map of last but one nodes of shortest paths.
 
   265     ///Returns a reference to the NodeMap of the last but one nodes on the
 
   267     ///\pre \ref run() must be called before using this function.
 
   268     const PredNodeMap &predNodeMap() const { return *pred_node;}
 
   270     ///Checks if a node is reachable from the root.
 
   272     ///Returns \c true if \c v is reachable from the root.
 
   273     ///\note The root node is reported to be reached!
 
   275     ///\pre \ref run() must be called before using this function.
 
   277     bool reached(Node v) { return v==source || (*predecessor)[v]!=INVALID; }
 
   283 } //END OF NAMESPACE LEMON