Removed some unnecessary files.
     2  * src/lemon/kruskal.h - Part of LEMON, a generic C++ optimization library
 
     4  * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
 
     5  * (Egervary Combinatorial Optimization Research Group, EGRES).
 
     7  * Permission to use, modify and distribute this software is granted
 
     8  * provided that this copyright notice appears in all copies. For
 
     9  * precise terms see the accompanying LICENSE file.
 
    11  * This software is provided "AS IS" with no warranty of any kind,
 
    12  * express or implied, and with no claim as to its suitability for any
 
    17 #ifndef LEMON_KRUSKAL_H
 
    18 #define LEMON_KRUSKAL_H
 
    21 #include <lemon/unionfind.h>
 
    24 @defgroup spantree Minimum Cost Spanning Tree Algorithms
 
    26 \brief This group containes the algorithms for finding a minimum cost spanning
 
    29 This group containes the algorithms for finding a minimum cost spanning
 
    35 ///\brief Kruskal's algorithm to compute a minimum cost tree
 
    37 ///Kruskal's algorithm to compute a minimum cost tree.
 
    41   /// \addtogroup spantree
 
    44   /// Kruskal's algorithm to find a minimum cost tree of a graph.
 
    46   /// This function runs Kruskal's algorithm to find a minimum cost tree.
 
    47   /// \param G The graph the algorithm runs on. The algorithm considers the
 
    48   /// graph to be undirected, the direction of the edges are not used.
 
    50   /// \param in This object is used to describe the edge costs. It must
 
    51   /// be an STL compatible 'Forward Container'
 
    52   /// with <tt>std::pair<GR::Edge,X></tt> as its <tt>value_type</tt>,
 
    53   /// where X is the type of the costs. It must contain every edge in
 
    54   /// cost-ascending order.
 
    56   /// For the sake of simplicity, there is a helper class KruskalMapInput,
 
    58   /// simple edge map to an input of this form. Alternatively, you can use
 
    59   /// the function \ref kruskalEdgeMap to compute the minimum cost tree if
 
    60   /// the edge costs are given by an edge map.
 
    62   /// \retval out This must be a writable \c bool edge map.
 
    63   /// After running the algorithm
 
    64   /// this will contain the found minimum cost spanning tree: the value of an
 
    65   /// edge will be set to \c true if it belongs to the tree, otherwise it will
 
    66   /// be set to \c false. The value of each edge will be set exactly once.
 
    68   /// \return The cost of the found tree.
 
    70   template <class GR, class IN, class OUT>
 
    71   typename IN::value_type::second_type
 
    72   kruskal(GR const& G, IN const& in, 
 
    75     typedef typename IN::value_type::second_type EdgeCost;
 
    76     typedef typename GR::template NodeMap<int> NodeIntMap;
 
    77     typedef typename GR::Node Node;
 
    79     NodeIntMap comp(G, -1);
 
    80     UnionFind<Node,NodeIntMap> uf(comp); 
 
    82     EdgeCost tot_cost = 0;
 
    83     for (typename IN::const_iterator p = in.begin(); 
 
    85       if ( uf.join(G.target((*p).first),
 
    86 		   G.source((*p).first)) ) {
 
    87 	out.set((*p).first, true);
 
    88 	tot_cost += (*p).second;
 
    91 	out.set((*p).first, false);
 
    97   /* A work-around for running Kruskal with const-reference bool maps... */
 
    99   /// Helper class for calling kruskal with "constant" output map.
 
   101   /// Helper class for calling kruskal with output maps constructed
 
   104   /// A typical examle is the following call:
 
   105   /// <tt>kruskal(G, some_input, makeSequenceOutput(iterator))</tt>.
 
   106   /// Here, the third argument is a temporary object (which wraps around an
 
   107   /// iterator with a writable bool map interface), and thus by rules of C++
 
   108   /// is a \c const object. To enable call like this exist this class and
 
   109   /// the prototype of the \ref kruskal() function with <tt>const& OUT</tt>
 
   112   class NonConstMapWr {
 
   115     typedef typename Map::Value Value;
 
   117     NonConstMapWr(const Map &_m) : m(_m) {}
 
   120     void set(Key const& k, Value const &v) const { m.set(k,v); }
 
   123   template <class GR, class IN, class OUT>
 
   125   typename IN::value_type::second_type
 
   126   kruskal(GR const& G, IN const& edges, OUT const& out_map)
 
   128     NonConstMapWr<OUT> map_wr(out_map);
 
   129     return kruskal(G, edges, map_wr);
 
   132   /* ** ** Input-objects ** ** */
 
   134   /// Kruskal input source.
 
   136   /// Kruskal input source.
 
   138   /// In most cases you possibly want to use the \ref kruskalEdgeMap() instead.
 
   140   /// \sa makeKruskalMapInput()
 
   142   ///\param GR The type of the graph the algorithm runs on.
 
   143   ///\param Map An edge map containing the cost of the edges.
 
   145   ///The cost type can be any type satisfying
 
   146   ///the STL 'LessThan comparable'
 
   147   ///concept if it also has an operator+() implemented. (It is necessary for
 
   148   ///computing the total cost of the tree).
 
   150   template<class GR, class Map>
 
   151   class KruskalMapInput
 
   152     : public std::vector< std::pair<typename GR::Edge,
 
   153 				    typename Map::Value> > {
 
   156     typedef std::vector< std::pair<typename GR::Edge,
 
   157 				   typename Map::Value> > Parent;
 
   158     typedef typename Parent::value_type value_type;
 
   163       bool operator()(const value_type& a,
 
   164 		      const value_type& b) {
 
   165 	return a.second < b.second;
 
   172       std::sort(this->begin(), this->end(), comparePair());
 
   175     KruskalMapInput(GR const& G, Map const& m) {
 
   176       typedef typename GR::EdgeIt EdgeIt;
 
   178       for(EdgeIt e(G);e!=INVALID;++e) push_back(value_type(e, m[e]));
 
   183   /// Creates a KruskalMapInput object for \ref kruskal()
 
   185   /// It makes is easier to use 
 
   186   /// \ref KruskalMapInput by making it unnecessary 
 
   187   /// to explicitly give the type of the parameters.
 
   189   /// In most cases you possibly
 
   190   /// want to use the function kruskalEdgeMap() instead.
 
   192   ///\param G The type of the graph the algorithm runs on.
 
   193   ///\param m An edge map containing the cost of the edges.
 
   195   ///The cost type can be any type satisfying the
 
   196   ///STL 'LessThan Comparable'
 
   197   ///concept if it also has an operator+() implemented. (It is necessary for
 
   198   ///computing the total cost of the tree).
 
   200   ///\return An appropriate input source for \ref kruskal().
 
   202   template<class GR, class Map>
 
   204   KruskalMapInput<GR,Map> makeKruskalMapInput(const GR &G,const Map &m)
 
   206     return KruskalMapInput<GR,Map>(G,m);
 
   211   /* ** ** Output-objects: simple writable bool maps ** ** */
 
   215   /// A writable bool-map that makes a sequence of "true" keys
 
   217   /// A writable bool-map that creates a sequence out of keys that receives
 
   218   /// the value "true".
 
   220   /// \sa makeKruskalSequenceOutput()
 
   222   /// Very often, when looking for a min cost spanning tree, we want as
 
   223   /// output a container containing the edges of the found tree. For this
 
   224   /// purpose exist this class that wraps around an STL iterator with a
 
   225   /// writable bool map interface. When a key gets value "true" this key
 
   226   /// is added to sequence pointed by the iterator.
 
   230   /// std::vector<Graph::Edge> v;
 
   231   /// kruskal(g, input, makeKruskalSequenceOutput(back_inserter(v)));
 
   234   /// For the most common case, when the input is given by a simple edge
 
   235   /// map and the output is a sequence of the tree edges, a special
 
   236   /// wrapper function exists: \ref kruskalEdgeMap_IteratorOut().
 
   238   /// \warning Not a regular property map, as it doesn't know its Key
 
   240   template<class Iterator>
 
   241   class KruskalSequenceOutput {
 
   247     KruskalSequenceOutput(Iterator const &_it) : it(_it) {}
 
   249     template<typename Key>
 
   250     void set(Key const& k, bool v) const { if(v) {*it=k; ++it;} }
 
   253   template<class Iterator>
 
   255   KruskalSequenceOutput<Iterator>
 
   256   makeKruskalSequenceOutput(Iterator it) {
 
   257     return KruskalSequenceOutput<Iterator>(it);
 
   262   /* ** ** Wrapper funtions ** ** */
 
   266   /// \brief Wrapper function to kruskal().
 
   267   /// Input is from an edge map, output is a plain bool map.
 
   269   /// Wrapper function to kruskal().
 
   270   /// Input is from an edge map, output is a plain bool map.
 
   272   ///\param G The type of the graph the algorithm runs on.
 
   273   ///\param in An edge map containing the cost of the edges.
 
   275   ///The cost type can be any type satisfying the
 
   276   ///STL 'LessThan Comparable'
 
   277   ///concept if it also has an operator+() implemented. (It is necessary for
 
   278   ///computing the total cost of the tree).
 
   280   /// \retval out This must be a writable \c bool edge map.
 
   281   /// After running the algorithm
 
   282   /// this will contain the found minimum cost spanning tree: the value of an
 
   283   /// edge will be set to \c true if it belongs to the tree, otherwise it will
 
   284   /// be set to \c false. The value of each edge will be set exactly once.
 
   286   /// \return The cost of the found tree.
 
   288   template <class GR, class IN, class RET>
 
   291   kruskalEdgeMap(GR const& G,
 
   295 		   KruskalMapInput<GR,IN>(G,in),
 
   299   /// \brief Wrapper function to kruskal().
 
   300   /// Input is from an edge map, output is an STL Sequence.
 
   302   /// Wrapper function to kruskal().
 
   303   /// Input is from an edge map, output is an STL Sequence.
 
   305   ///\param G The type of the graph the algorithm runs on.
 
   306   ///\param in An edge map containing the cost of the edges.
 
   308   ///The cost type can be any type satisfying the
 
   309   ///STL 'LessThan Comparable'
 
   310   ///concept if it also has an operator+() implemented. (It is necessary for
 
   311   ///computing the total cost of the tree).
 
   313   /// \retval out This must be an iteraror of an STL Container with
 
   314   /// <tt>GR::Edge</tt> as its <tt>value_type</tt>.
 
   315   /// The algorithm copies the elements of the found tree into this sequence.
 
   316   /// For example, if we know that the spanning tree of the graph \c G has
 
   317   /// say 53 edges then
 
   318   /// we can put its edges into a STL vector \c tree with a code like this.
 
   320   /// std::vector<Edge> tree(53);
 
   321   /// kruskalEdgeMap_IteratorOut(G,cost,tree.begin());
 
   323   /// Or if we don't know in advance the size of the tree, we can write this.
 
   325   /// std::vector<Edge> tree;
 
   326   /// kruskalEdgeMap_IteratorOut(G,cost,std::back_inserter(tree));
 
   329   /// \return The cost of the found tree.
 
   331   /// \bug its name does not follow the coding style.
 
   333   template <class GR, class IN, class RET>
 
   336   kruskalEdgeMap_IteratorOut(const GR& G,
 
   340     KruskalSequenceOutput<RET> _out(out);
 
   341     return kruskal(G, KruskalMapInput<GR,IN>(G, in), _out);
 
   348 #endif //LEMON_KRUSKAL_H