Improved documentation.
     3  * This file is a part of LEMON, a generic C++ optimization library
 
     5  * Copyright (C) 2003-2006
 
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
 
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
 
     9  * Permission to use, modify and distribute this software is granted
 
    10  * provided that this copyright notice appears in all copies. For
 
    11  * precise terms see the accompanying LICENSE file.
 
    13  * This software is provided "AS IS" with no warranty of any kind,
 
    14  * express or implied, and with no claim as to its suitability for any
 
    19 ///\ingroup graph_concepts
 
    21 ///\brief The concept of the undirected graphs.
 
    24 #ifndef LEMON_CONCEPT_UGRAPH_H
 
    25 #define LEMON_CONCEPT_UGRAPH_H
 
    27 #include <lemon/concept/graph_components.h>
 
    28 #include <lemon/concept/graph.h>
 
    29 #include <lemon/bits/utility.h>
 
    34     /// \addtogroup graph_concepts
 
    38     /// \brief Class describing the concept of Undirected Graphs.
 
    40     /// This class describes the common interface of all Undirected
 
    43     /// As all concept describing classes it provides only interface
 
    44     /// without any sensible implementation. So any algorithm for
 
    45     /// undirected graph should compile with this class, but it will not
 
    46     /// run properly, of course.
 
    48     /// The LEMON undirected graphs also fulfill the concept of
 
    49     /// directed graphs (\ref lemon::concept::Graph "Graph
 
    50     /// Concept"). Each undirected edges can be seen as two opposite
 
    51     /// directed edge and consequently the undirected graph can be
 
    52     /// seen as the direceted graph of these directed edges. The
 
    53     /// UGraph has the UEdge inner class for the undirected edges and
 
    54     /// the Edge type for the directed edges. The Edge type is
 
    55     /// convertible to UEdge or inherited from it so from a directed
 
    56     /// edge we can get the represented undirected edge.
 
    58     /// In the sense of the LEMON each undirected edge has a default
 
    59     /// direction (it should be in every computer implementation,
 
    60     /// because the order of undirected edge's nodes defines an
 
    61     /// orientation). With the default orientation we can define that
 
    62     /// the directed edge is forward or backward directed. With the \c
 
    63     /// direction() and \c direct() function we can get the direction
 
    64     /// of the directed edge and we can direct an undirected edge.
 
    66     /// The UEdgeIt is an iterator for the undirected edges. We can use
 
    67     /// the UEdgeMap to map values for the undirected edges. The InEdgeIt and
 
    68     /// OutEdgeIt iterates on the same undirected edges but with opposite
 
    69     /// direction. The IncEdgeIt iterates also on the same undirected edges
 
    70     /// as the OutEdgeIt and InEdgeIt but it is not convertible to Edge just
 
    74       /// \brief The undirected graph should be tagged by the
 
    77       /// The undirected graph should be tagged by the UndirectedTag. This
 
    78       /// tag helps the enable_if technics to make compile time 
 
    79       /// specializations for undirected graphs.  
 
    80       typedef True UndirectedTag;
 
    82       /// \brief The base type of node iterators, 
 
    83       /// or in other words, the trivial node iterator.
 
    85       /// This is the base type of each node iterator,
 
    86       /// thus each kind of node iterator converts to this.
 
    87       /// More precisely each kind of node iterator should be inherited 
 
    88       /// from the trivial node iterator.
 
    91         /// Default constructor
 
    93         /// @warning The default constructor sets the iterator
 
    94         /// to an undefined value.
 
   100         Node(const Node&) { }
 
   102         /// Invalid constructor \& conversion.
 
   104         /// This constructor initializes the iterator to be invalid.
 
   105         /// \sa Invalid for more details.
 
   107         /// Equality operator
 
   109         /// Two iterators are equal if and only if they point to the
 
   110         /// same object or both are invalid.
 
   111         bool operator==(Node) const { return true; }
 
   113         /// Inequality operator
 
   115         /// \sa operator==(Node n)
 
   117         bool operator!=(Node) const { return true; }
 
   119 	/// Artificial ordering operator.
 
   121 	/// To allow the use of graph descriptors as key type in std::map or
 
   122 	/// similar associative container we require this.
 
   124 	/// \note This operator only have to define some strict ordering of
 
   125 	/// the items; this order has nothing to do with the iteration
 
   126 	/// ordering of the items.
 
   127 	bool operator<(Node) const { return false; }
 
   131       /// This iterator goes through each node.
 
   133       /// This iterator goes through each node.
 
   134       /// Its usage is quite simple, for example you can count the number
 
   135       /// of nodes in graph \c g of type \c Graph like this:
 
   138       /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count;
 
   140       class NodeIt : public Node {
 
   142         /// Default constructor
 
   144         /// @warning The default constructor sets the iterator
 
   145         /// to an undefined value.
 
   147         /// Copy constructor.
 
   149         /// Copy constructor.
 
   151         NodeIt(const NodeIt& n) : Node(n) { }
 
   152         /// Invalid constructor \& conversion.
 
   154         /// Initialize the iterator to be invalid.
 
   155         /// \sa Invalid for more details.
 
   157         /// Sets the iterator to the first node.
 
   159         /// Sets the iterator to the first node of \c g.
 
   161         NodeIt(const UGraph&) { }
 
   162         /// Node -> NodeIt conversion.
 
   164         /// Sets the iterator to the node of \c the graph pointed by 
 
   165 	/// the trivial iterator.
 
   166         /// This feature necessitates that each time we 
 
   167         /// iterate the edge-set, the iteration order is the same.
 
   168         NodeIt(const UGraph&, const Node&) { }
 
   171         /// Assign the iterator to the next node.
 
   173         NodeIt& operator++() { return *this; }
 
   177       /// The base type of the undirected edge iterators.
 
   179       /// The base type of the undirected edge iterators.
 
   183         /// Default constructor
 
   185         /// @warning The default constructor sets the iterator
 
   186         /// to an undefined value.
 
   188         /// Copy constructor.
 
   190         /// Copy constructor.
 
   192         UEdge(const UEdge&) { }
 
   193         /// Initialize the iterator to be invalid.
 
   195         /// Initialize the iterator to be invalid.
 
   198         /// Equality operator
 
   200         /// Two iterators are equal if and only if they point to the
 
   201         /// same object or both are invalid.
 
   202         bool operator==(UEdge) const { return true; }
 
   203         /// Inequality operator
 
   205         /// \sa operator==(UEdge n)
 
   207         bool operator!=(UEdge) const { return true; }
 
   209 	/// Artificial ordering operator.
 
   211 	/// To allow the use of graph descriptors as key type in std::map or
 
   212 	/// similar associative container we require this.
 
   214 	/// \note This operator only have to define some strict ordering of
 
   215 	/// the items; this order has nothing to do with the iteration
 
   216 	/// ordering of the items.
 
   217 	bool operator<(UEdge) const { return false; }
 
   220       /// This iterator goes through each undirected edge.
 
   222       /// This iterator goes through each undirected edge of a graph.
 
   223       /// Its usage is quite simple, for example you can count the number
 
   224       /// of undirected edges in a graph \c g of type \c Graph as follows:
 
   227       /// for(Graph::UEdgeIt e(g); e!=INVALID; ++e) ++count;
 
   229       class UEdgeIt : public UEdge {
 
   231         /// Default constructor
 
   233         /// @warning The default constructor sets the iterator
 
   234         /// to an undefined value.
 
   236         /// Copy constructor.
 
   238         /// Copy constructor.
 
   240         UEdgeIt(const UEdgeIt& e) : UEdge(e) { }
 
   241         /// Initialize the iterator to be invalid.
 
   243         /// Initialize the iterator to be invalid.
 
   246         /// This constructor sets the iterator to the first undirected edge.
 
   248         /// This constructor sets the iterator to the first undirected edge.
 
   249         UEdgeIt(const UGraph&) { }
 
   250         /// UEdge -> UEdgeIt conversion
 
   252         /// Sets the iterator to the value of the trivial iterator.
 
   253         /// This feature necessitates that each time we
 
   254         /// iterate the undirected edge-set, the iteration order is the 
 
   256         UEdgeIt(const UGraph&, const UEdge&) { } 
 
   257         /// Next undirected edge
 
   259         /// Assign the iterator to the next undirected edge.
 
   260         UEdgeIt& operator++() { return *this; }
 
   263       /// \brief This iterator goes trough the incident undirected 
 
   266       /// This iterator goes trough the incident undirected edges
 
   267       /// of a certain node of a graph. You should assume that the 
 
   268       /// loop edges will be iterated twice.
 
   270       /// Its usage is quite simple, for example you can compute the
 
   271       /// degree (i.e. count the number of incident edges of a node \c n
 
   272       /// in graph \c g of type \c Graph as follows. 
 
   276       /// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
 
   278       class IncEdgeIt : public UEdge {
 
   280         /// Default constructor
 
   282         /// @warning The default constructor sets the iterator
 
   283         /// to an undefined value.
 
   285         /// Copy constructor.
 
   287         /// Copy constructor.
 
   289         IncEdgeIt(const IncEdgeIt& e) : UEdge(e) { }
 
   290         /// Initialize the iterator to be invalid.
 
   292         /// Initialize the iterator to be invalid.
 
   294         IncEdgeIt(Invalid) { }
 
   295         /// This constructor sets the iterator to first incident edge.
 
   297         /// This constructor set the iterator to the first incident edge of
 
   299         IncEdgeIt(const UGraph&, const Node&) { }
 
   300         /// UEdge -> IncEdgeIt conversion
 
   302         /// Sets the iterator to the value of the trivial iterator \c e.
 
   303         /// This feature necessitates that each time we 
 
   304         /// iterate the edge-set, the iteration order is the same.
 
   305         IncEdgeIt(const UGraph&, const UEdge&) { }
 
   306         /// Next incident edge
 
   308         /// Assign the iterator to the next incident edge
 
   309 	/// of the corresponding node.
 
   310         IncEdgeIt& operator++() { return *this; }
 
   313       /// The directed edge type.
 
   315       /// The directed edge type. It can be converted to the
 
   316       /// undirected edge or it should be inherited from the undirected
 
   318       class Edge : public UEdge {
 
   320         /// Default constructor
 
   322         /// @warning The default constructor sets the iterator
 
   323         /// to an undefined value.
 
   325         /// Copy constructor.
 
   327         /// Copy constructor.
 
   329         Edge(const Edge& e) : UEdge(e) { }
 
   330         /// Initialize the iterator to be invalid.
 
   332         /// Initialize the iterator to be invalid.
 
   335         /// Equality operator
 
   337         /// Two iterators are equal if and only if they point to the
 
   338         /// same object or both are invalid.
 
   339         bool operator==(Edge) const { return true; }
 
   340         /// Inequality operator
 
   342         /// \sa operator==(Edge n)
 
   344         bool operator!=(Edge) const { return true; }
 
   346 	/// Artificial ordering operator.
 
   348 	/// To allow the use of graph descriptors as key type in std::map or
 
   349 	/// similar associative container we require this.
 
   351 	/// \note This operator only have to define some strict ordering of
 
   352 	/// the items; this order has nothing to do with the iteration
 
   353 	/// ordering of the items.
 
   354 	bool operator<(Edge) const { return false; }
 
   357       /// This iterator goes through each directed edge.
 
   359       /// This iterator goes through each edge of a graph.
 
   360       /// Its usage is quite simple, for example you can count the number
 
   361       /// of edges in a graph \c g of type \c Graph as follows:
 
   364       /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count;
 
   366       class EdgeIt : public Edge {
 
   368         /// Default constructor
 
   370         /// @warning The default constructor sets the iterator
 
   371         /// to an undefined value.
 
   373         /// Copy constructor.
 
   375         /// Copy constructor.
 
   377         EdgeIt(const EdgeIt& e) : Edge(e) { }
 
   378         /// Initialize the iterator to be invalid.
 
   380         /// Initialize the iterator to be invalid.
 
   383         /// This constructor sets the iterator to the first edge.
 
   385         /// This constructor sets the iterator to the first edge of \c g.
 
   386         ///@param g the graph
 
   387         EdgeIt(const UGraph &g) { ignore_unused_variable_warning(g); }
 
   388         /// Edge -> EdgeIt conversion
 
   390         /// Sets the iterator to the value of the trivial iterator \c e.
 
   391         /// This feature necessitates that each time we 
 
   392         /// iterate the edge-set, the iteration order is the same.
 
   393         EdgeIt(const UGraph&, const Edge&) { } 
 
   396         /// Assign the iterator to the next edge.
 
   397         EdgeIt& operator++() { return *this; }
 
   400       /// This iterator goes trough the outgoing directed edges of a node.
 
   402       /// This iterator goes trough the \e outgoing edges of a certain node
 
   404       /// Its usage is quite simple, for example you can count the number
 
   405       /// of outgoing edges of a node \c n
 
   406       /// in graph \c g of type \c Graph as follows.
 
   409       /// for (Graph::OutEdgeIt e(g, n); e!=INVALID; ++e) ++count;
 
   412       class OutEdgeIt : public Edge {
 
   414         /// Default constructor
 
   416         /// @warning The default constructor sets the iterator
 
   417         /// to an undefined value.
 
   419         /// Copy constructor.
 
   421         /// Copy constructor.
 
   423         OutEdgeIt(const OutEdgeIt& e) : Edge(e) { }
 
   424         /// Initialize the iterator to be invalid.
 
   426         /// Initialize the iterator to be invalid.
 
   428         OutEdgeIt(Invalid) { }
 
   429         /// This constructor sets the iterator to the first outgoing edge.
 
   431         /// This constructor sets the iterator to the first outgoing edge of
 
   434         ///@param g the graph
 
   435         OutEdgeIt(const UGraph& n, const Node& g) {
 
   436 	  ignore_unused_variable_warning(n);
 
   437 	  ignore_unused_variable_warning(g);
 
   439         /// Edge -> OutEdgeIt conversion
 
   441         /// Sets the iterator to the value of the trivial iterator.
 
   442 	/// This feature necessitates that each time we 
 
   443         /// iterate the edge-set, the iteration order is the same.
 
   444         OutEdgeIt(const UGraph&, const Edge&) { }
 
   445         ///Next outgoing edge
 
   447         /// Assign the iterator to the next 
 
   448         /// outgoing edge of the corresponding node.
 
   449         OutEdgeIt& operator++() { return *this; }
 
   452       /// This iterator goes trough the incoming directed edges of a node.
 
   454       /// This iterator goes trough the \e incoming edges of a certain node
 
   456       /// Its usage is quite simple, for example you can count the number
 
   457       /// of outgoing edges of a node \c n
 
   458       /// in graph \c g of type \c Graph as follows.
 
   461       /// for(Graph::InEdgeIt e(g, n); e!=INVALID; ++e) ++count;
 
   464       class InEdgeIt : public Edge {
 
   466         /// Default constructor
 
   468         /// @warning The default constructor sets the iterator
 
   469         /// to an undefined value.
 
   471         /// Copy constructor.
 
   473         /// Copy constructor.
 
   475         InEdgeIt(const InEdgeIt& e) : Edge(e) { }
 
   476         /// Initialize the iterator to be invalid.
 
   478         /// Initialize the iterator to be invalid.
 
   480         InEdgeIt(Invalid) { }
 
   481         /// This constructor sets the iterator to first incoming edge.
 
   483         /// This constructor set the iterator to the first incoming edge of
 
   486         ///@param g the graph
 
   487         InEdgeIt(const UGraph& g, const Node& n) { 
 
   488 	  ignore_unused_variable_warning(n);
 
   489 	  ignore_unused_variable_warning(g);
 
   491         /// Edge -> InEdgeIt conversion
 
   493         /// Sets the iterator to the value of the trivial iterator \c e.
 
   494         /// This feature necessitates that each time we 
 
   495         /// iterate the edge-set, the iteration order is the same.
 
   496         InEdgeIt(const UGraph&, const Edge&) { }
 
   497         /// Next incoming edge
 
   499         /// Assign the iterator to the next inedge of the corresponding node.
 
   501         InEdgeIt& operator++() { return *this; }
 
   504       /// \brief Read write map of the nodes to type \c T.
 
   506       /// ReadWrite map of the nodes to type \c T.
 
   508       /// \warning Making maps that can handle bool type (NodeMap<bool>)
 
   509       /// needs some extra attention!
 
   511       class NodeMap : public ReadWriteMap< Node, T >
 
   516         NodeMap(const UGraph&) { }
 
   518         NodeMap(const UGraph&, T) { }
 
   521         NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
 
   522         ///Assignment operator
 
   523         template <typename CMap>
 
   524         NodeMap& operator=(const CMap&) { 
 
   525           checkConcept<ReadMap<Node, T>, CMap>();
 
   530       /// \brief Read write map of the directed edges to type \c T.
 
   532       /// Reference map of the directed edges to type \c T.
 
   534       /// \warning Making maps that can handle bool type (EdgeMap<bool>)
 
   535       /// needs some extra attention!
 
   537       class EdgeMap : public ReadWriteMap<Edge,T>
 
   542         EdgeMap(const UGraph&) { }
 
   544         EdgeMap(const UGraph&, T) { }
 
   546         EdgeMap(const EdgeMap& em) : ReadWriteMap<Edge,T>(em) { }
 
   547         ///Assignment operator
 
   548         template <typename CMap>
 
   549         EdgeMap& operator=(const CMap&) { 
 
   550           checkConcept<ReadMap<Edge, T>, CMap>();
 
   555       /// Read write map of the undirected edges to type \c T.
 
   557       /// Reference map of the edges to type \c T.
 
   559       /// \warning Making maps that can handle bool type (UEdgeMap<bool>)
 
   560       /// needs some extra attention!
 
   562       class UEdgeMap : public ReadWriteMap<UEdge,T>
 
   567         UEdgeMap(const UGraph&) { }
 
   569         UEdgeMap(const UGraph&, T) { }
 
   571         UEdgeMap(const UEdgeMap& em) : ReadWriteMap<UEdge,T>(em) {}
 
   572         ///Assignment operator
 
   573         template <typename CMap>
 
   574         UEdgeMap& operator=(const CMap&) { 
 
   575           checkConcept<ReadMap<UEdge, T>, CMap>();
 
   580       /// \brief Direct the given undirected edge.
 
   582       /// Direct the given undirected edge. The returned edge source
 
   583       /// will be the given node.
 
   584       Edge direct(const UEdge&, const Node&) const {
 
   588       /// \brief Direct the given undirected edge.
 
   590       /// Direct the given undirected edge. The returned edge
 
   591       /// represents the given undireted edge and the direction comes
 
   592       /// from the given bool.  The source of the undirected edge and
 
   593       /// the directed edge is the same when the given bool is true.
 
   594       Edge direct(const UEdge&, bool) const {
 
   598       /// \brief Returns true if the edge has default orientation.
 
   600       /// Returns whether the given directed edge is same orientation as
 
   601       /// the corresponding undirected edge's default orientation.
 
   602       bool direction(Edge) const { return true; }
 
   604       /// \brief Returns the opposite directed edge.
 
   606       /// Returns the opposite directed edge.
 
   607       Edge oppositeEdge(Edge) const { return INVALID; }
 
   609       /// \brief Opposite node on an edge
 
   611       /// \return the opposite of the given Node on the given UEdge
 
   612       Node oppositeNode(Node, UEdge) const { return INVALID; }
 
   614       /// \brief First node of the undirected edge.
 
   616       /// \return the first node of the given UEdge.
 
   618       /// Naturally undirected edges don't have direction and thus
 
   619       /// don't have source and target node. But we use these two methods
 
   620       /// to query the two nodes of the edge. The direction of the edge
 
   621       /// which arises this way is called the inherent direction of the
 
   622       /// undirected edge, and is used to define the "default" direction
 
   623       /// of the directed versions of the edges.
 
   625       Node source(UEdge) const { return INVALID; }
 
   627       /// \brief Second node of the undirected edge.
 
   628       Node target(UEdge) const { return INVALID; }
 
   630       /// \brief Source node of the directed edge.
 
   631       Node source(Edge) const { return INVALID; }
 
   633       /// \brief Target node of the directed edge.
 
   634       Node target(Edge) const { return INVALID; }
 
   636       void first(Node&) const {}
 
   637       void next(Node&) const {}
 
   639       void first(UEdge&) const {}
 
   640       void next(UEdge&) const {}
 
   642       void first(Edge&) const {}
 
   643       void next(Edge&) const {}
 
   645       void firstOut(Edge&, Node) const {}
 
   646       void nextOut(Edge&) const {}
 
   648       void firstIn(Edge&, Node) const {}
 
   649       void nextIn(Edge&) const {}
 
   652       void firstInc(UEdge &, bool &, const Node &) const {}
 
   653       void nextInc(UEdge &, bool &) const {}
 
   655       /// \brief Base node of the iterator
 
   657       /// Returns the base node (the source in this case) of the iterator
 
   658       Node baseNode(OutEdgeIt e) const {
 
   661       /// \brief Running node of the iterator
 
   663       /// Returns the running node (the target in this case) of the
 
   665       Node runningNode(OutEdgeIt e) const {
 
   669       /// \brief Base node of the iterator
 
   671       /// Returns the base node (the target in this case) of the iterator
 
   672       Node baseNode(InEdgeIt e) const {
 
   675       /// \brief Running node of the iterator
 
   677       /// Returns the running node (the source in this case) of the
 
   679       Node runningNode(InEdgeIt e) const {
 
   683       /// \brief Base node of the iterator
 
   685       /// Returns the base node of the iterator
 
   686       Node baseNode(IncEdgeIt) const {
 
   690       /// \brief Running node of the iterator
 
   692       /// Returns the running node of the iterator
 
   693       Node runningNode(IncEdgeIt) const {
 
   697       template <typename Graph>
 
   700 	  checkConcept<BaseIterableUGraphComponent<>, Graph>();
 
   701 	  checkConcept<IterableUGraphComponent<>, Graph>();
 
   702 	  checkConcept<MappableUGraphComponent<>, Graph>();