3  * This file is a part of LEMON, a generic C++ optimization library
 
     5  * Copyright (C) 2003-2007
 
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
 
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
 
     9  * Permission to use, modify and distribute this software is granted
 
    10  * provided that this copyright notice appears in all copies. For
 
    11  * precise terms see the accompanying LICENSE file.
 
    13  * This software is provided "AS IS" with no warranty of any kind,
 
    14  * express or implied, and with no claim as to its suitability for any
 
    19 /// \ingroup graph_concepts
 
    21 /// \brief The concept of Bipartite Undirected Graphs.
 
    23 #ifndef LEMON_CONCEPT_BPUGRAPH_H
 
    24 #define LEMON_CONCEPT_BPUGRAPH_H
 
    26 #include <lemon/concepts/graph_components.h>
 
    28 #include <lemon/concepts/graph.h>
 
    29 #include <lemon/concepts/ugraph.h>
 
    31 #include <lemon/bits/utility.h>
 
    36     /// \ingroup graph_concepts
 
    38     /// \brief Class describing the concept of Bipartite Undirected Graphs.
 
    40     /// This class describes the common interface of all 
 
    41     /// Undirected Bipartite Graphs.
 
    43     /// As all concept describing classes it provides only interface
 
    44     /// without any sensible implementation. So any algorithm for
 
    45     /// bipartite undirected graph should compile with this class, but it 
 
    46     /// will not run properly, of course.
 
    48     /// In LEMON bipartite undirected graphs also fulfill the concept of 
 
    49     /// the undirected graphs (\ref lemon::concepts::UGraph "UGraph Concept"). 
 
    51     /// You can assume that all undirected bipartite graph can be handled
 
    52     /// as an undirected graph and consequently as a static graph.
 
    54     /// The bipartite graph stores two types of nodes which are named
 
    55     /// ANode and BNode. The graph type contains two types ANode and
 
    56     /// BNode which are inherited from Node type. Moreover they have
 
    57     /// constructor which converts Node to either ANode or BNode when
 
    58     /// it is possible. Therefor everywhere the Node type can be used
 
    59     /// instead of ANode and BNode. So the usage of the ANode and
 
    60     /// BNode is not suggested.
 
    62     /// The iteration on the partition can be done with the ANodeIt and 
 
    63     /// BNodeIt classes. The node map can be used to map values to the nodes
 
    64     /// and similarly we can use to map values for just the ANodes and
 
    65     /// BNodes the ANodeMap and BNodeMap template classes.
 
    69       /// \brief The undirected graph should be tagged by the
 
    72       /// The undirected graph should be tagged by the UndirectedTag. This
 
    73       /// tag helps the enable_if technics to make compile time 
 
    74       /// specializations for undirected graphs.  
 
    75       typedef True UndirectedTag;
 
    77       /// \brief The base type of node iterators, 
 
    78       /// or in other words, the trivial node iterator.
 
    80       /// This is the base type of each node iterator,
 
    81       /// thus each kind of node iterator converts to this.
 
    82       /// More precisely each kind of node iterator should be inherited 
 
    83       /// from the trivial node iterator. The Node class represents
 
    84       /// both of two types of nodes. 
 
    87         /// Default constructor
 
    89         /// @warning The default constructor sets the iterator
 
    90         /// to an undefined value.
 
    98         /// Invalid constructor \& conversion.
 
   100         /// This constructor initializes the iterator to be invalid.
 
   101         /// \sa Invalid for more details.
 
   103         /// Equality operator
 
   105         /// Two iterators are equal if and only if they point to the
 
   106         /// same object or both are invalid.
 
   107         bool operator==(Node) const { return true; }
 
   109         /// Inequality operator
 
   111         /// \sa operator==(Node n)
 
   113         bool operator!=(Node) const { return true; }
 
   115 	/// Artificial ordering operator.
 
   117 	/// To allow the use of graph descriptors as key type in std::map or
 
   118 	/// similar associative container we require this.
 
   120 	/// \note This operator only have to define some strict ordering of
 
   121 	/// the items; this order has nothing to do with the iteration
 
   122 	/// ordering of the items.
 
   123 	bool operator<(Node) const { return false; }
 
   127       /// \brief Helper class for ANodes.
 
   129       /// This class is just a helper class for ANodes, it is not
 
   130       /// suggested to use it directly. It can be converted easily to
 
   131       /// node and vice versa. The usage of this class is limited
 
   132       /// to use just as template parameters for special map types. 
 
   133       class ANode : public Node {
 
   135         /// Default constructor
 
   137         /// @warning The default constructor sets the iterator
 
   138         /// to an undefined value.
 
   140         /// Copy constructor.
 
   142         /// Copy constructor.
 
   144         ANode(const ANode&) : Node() { }
 
   146         /// Construct the same node as ANode.
 
   148         /// Construct the same node as ANode. It may throws assertion
 
   149         /// when the given node is from the BNode set.
 
   150         ANode(const Node&) : Node() { }
 
   152         /// Assign node to A-node.
 
   154         /// Besides the core graph item functionality each node should
 
   155         /// be convertible to the represented A-node if it is it possible. 
 
   156         ANode& operator=(const Node&) { return *this; }
 
   158         /// Invalid constructor \& conversion.
 
   160         /// This constructor initializes the iterator to be invalid.
 
   161         /// \sa Invalid for more details.
 
   163         /// Equality operator
 
   165         /// Two iterators are equal if and only if they point to the
 
   166         /// same object or both are invalid.
 
   167         bool operator==(ANode) const { return true; }
 
   169         /// Inequality operator
 
   171         /// \sa operator==(ANode n)
 
   173         bool operator!=(ANode) const { return true; }
 
   175 	/// Artificial ordering operator.
 
   177 	/// To allow the use of graph descriptors as key type in std::map or
 
   178 	/// similar associative container we require this.
 
   180 	/// \note This operator only have to define some strict ordering of
 
   181 	/// the items; this order has nothing to do with the iteration
 
   182 	/// ordering of the items.
 
   183 	bool operator<(ANode) const { return false; }
 
   187       /// \brief Helper class for BNodes.
 
   189       /// This class is just a helper class for BNodes, it is not
 
   190       /// suggested to use it directly. It can be converted easily to
 
   191       /// node and vice versa. The usage of this class is limited
 
   192       /// to use just as template parameters for special map types. 
 
   193       class BNode : public Node {
 
   195         /// Default constructor
 
   197         /// @warning The default constructor sets the iterator
 
   198         /// to an undefined value.
 
   200         /// Copy constructor.
 
   202         /// Copy constructor.
 
   204         BNode(const BNode&) : Node() { }
 
   206         /// Construct the same node as BNode.
 
   208         /// Construct the same node as BNode. It may throws assertion
 
   209         /// when the given node is from the ANode set.
 
   210         BNode(const Node&) : Node() { }
 
   212         /// Assign node to B-node.
 
   214         /// Besides the core graph item functionality each node should
 
   215         /// be convertible to the represented B-node if it is it possible. 
 
   216         BNode& operator=(const Node&) { return *this; }
 
   218         /// Invalid constructor \& conversion.
 
   220         /// This constructor initializes the iterator to be invalid.
 
   221         /// \sa Invalid for more details.
 
   223         /// Equality operator
 
   225         /// Two iterators are equal if and only if they point to the
 
   226         /// same object or both are invalid.
 
   227         bool operator==(BNode) const { return true; }
 
   229         /// Inequality operator
 
   231         /// \sa operator==(BNode n)
 
   233         bool operator!=(BNode) const { return true; }
 
   235 	/// Artificial ordering operator.
 
   237 	/// To allow the use of graph descriptors as key type in std::map or
 
   238 	/// similar associative container we require this.
 
   240 	/// \note This operator only have to define some strict ordering of
 
   241 	/// the items; this order has nothing to do with the iteration
 
   242 	/// ordering of the items.
 
   243 	bool operator<(BNode) const { return false; }
 
   247       /// This iterator goes through each node.
 
   249       /// This iterator goes through each node.
 
   250       /// Its usage is quite simple, for example you can count the number
 
   251       /// of nodes in graph \c g of type \c Graph like this:
 
   254       /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count;
 
   256       class NodeIt : public Node {
 
   258         /// Default constructor
 
   260         /// @warning The default constructor sets the iterator
 
   261         /// to an undefined value.
 
   263         /// Copy constructor.
 
   265         /// Copy constructor.
 
   267         NodeIt(const NodeIt& n) : Node(n) { }
 
   268         /// Invalid constructor \& conversion.
 
   270         /// Initialize the iterator to be invalid.
 
   271         /// \sa Invalid for more details.
 
   273         /// Sets the iterator to the first node.
 
   275         /// Sets the iterator to the first node of \c g.
 
   277         NodeIt(const BpUGraph&) { }
 
   278         /// Node -> NodeIt conversion.
 
   280         /// Sets the iterator to the node of \c the graph pointed by 
 
   281 	/// the trivial iterator.
 
   282         /// This feature necessitates that each time we 
 
   283         /// iterate the edge-set, the iteration order is the same.
 
   284         NodeIt(const BpUGraph&, const Node&) { }
 
   287         /// Assign the iterator to the next node.
 
   289         NodeIt& operator++() { return *this; }
 
   292       /// This iterator goes through each ANode.
 
   294       /// This iterator goes through each ANode.
 
   295       /// Its usage is quite simple, for example you can count the number
 
   296       /// of nodes in graph \c g of type \c Graph like this:
 
   299       /// for (Graph::ANodeIt n(g); n!=INVALID; ++n) ++count;
 
   301       class ANodeIt : public Node {
 
   303         /// Default constructor
 
   305         /// @warning The default constructor sets the iterator
 
   306         /// to an undefined value.
 
   308         /// Copy constructor.
 
   310         /// Copy constructor.
 
   312         ANodeIt(const ANodeIt& n) : Node(n) { }
 
   313         /// Invalid constructor \& conversion.
 
   315         /// Initialize the iterator to be invalid.
 
   316         /// \sa Invalid for more details.
 
   318         /// Sets the iterator to the first node.
 
   320         /// Sets the iterator to the first node of \c g.
 
   322         ANodeIt(const BpUGraph&) { }
 
   323         /// Node -> ANodeIt conversion.
 
   325         /// Sets the iterator to the node of \c the graph pointed by 
 
   326 	/// the trivial iterator.
 
   327         /// This feature necessitates that each time we 
 
   328         /// iterate the edge-set, the iteration order is the same.
 
   329         ANodeIt(const BpUGraph&, const Node&) { }
 
   332         /// Assign the iterator to the next node.
 
   334         ANodeIt& operator++() { return *this; }
 
   337       /// This iterator goes through each BNode.
 
   339       /// This iterator goes through each BNode.
 
   340       /// Its usage is quite simple, for example you can count the number
 
   341       /// of nodes in graph \c g of type \c Graph like this:
 
   344       /// for (Graph::BNodeIt n(g); n!=INVALID; ++n) ++count;
 
   346       class BNodeIt : public Node {
 
   348         /// Default constructor
 
   350         /// @warning The default constructor sets the iterator
 
   351         /// to an undefined value.
 
   353         /// Copy constructor.
 
   355         /// Copy constructor.
 
   357         BNodeIt(const BNodeIt& n) : Node(n) { }
 
   358         /// Invalid constructor \& conversion.
 
   360         /// Initialize the iterator to be invalid.
 
   361         /// \sa Invalid for more details.
 
   363         /// Sets the iterator to the first node.
 
   365         /// Sets the iterator to the first node of \c g.
 
   367         BNodeIt(const BpUGraph&) { }
 
   368         /// Node -> BNodeIt conversion.
 
   370         /// Sets the iterator to the node of \c the graph pointed by 
 
   371 	/// the trivial iterator.
 
   372         /// This feature necessitates that each time we 
 
   373         /// iterate the edge-set, the iteration order is the same.
 
   374         BNodeIt(const BpUGraph&, const Node&) { }
 
   377         /// Assign the iterator to the next node.
 
   379         BNodeIt& operator++() { return *this; }
 
   383       /// The base type of the undirected edge iterators.
 
   385       /// The base type of the undirected edge iterators.
 
   389         /// Default constructor
 
   391         /// @warning The default constructor sets the iterator
 
   392         /// to an undefined value.
 
   394         /// Copy constructor.
 
   396         /// Copy constructor.
 
   398         UEdge(const UEdge&) { }
 
   399         /// Initialize the iterator to be invalid.
 
   401         /// Initialize the iterator to be invalid.
 
   404         /// Equality operator
 
   406         /// Two iterators are equal if and only if they point to the
 
   407         /// same object or both are invalid.
 
   408         bool operator==(UEdge) const { return true; }
 
   409         /// Inequality operator
 
   411         /// \sa operator==(UEdge n)
 
   413         bool operator!=(UEdge) const { return true; }
 
   415 	/// Artificial ordering operator.
 
   417 	/// To allow the use of graph descriptors as key type in std::map or
 
   418 	/// similar associative container we require this.
 
   420 	/// \note This operator only have to define some strict ordering of
 
   421 	/// the items; this order has nothing to do with the iteration
 
   422 	/// ordering of the items.
 
   423 	bool operator<(UEdge) const { return false; }
 
   426       /// This iterator goes through each undirected edge.
 
   428       /// This iterator goes through each undirected edge of a graph.
 
   429       /// Its usage is quite simple, for example you can count the number
 
   430       /// of undirected edges in a graph \c g of type \c Graph as follows:
 
   433       /// for(Graph::UEdgeIt e(g); e!=INVALID; ++e) ++count;
 
   435       class UEdgeIt : public UEdge {
 
   437         /// Default constructor
 
   439         /// @warning The default constructor sets the iterator
 
   440         /// to an undefined value.
 
   442         /// Copy constructor.
 
   444         /// Copy constructor.
 
   446         UEdgeIt(const UEdgeIt& e) : UEdge(e) { }
 
   447         /// Initialize the iterator to be invalid.
 
   449         /// Initialize the iterator to be invalid.
 
   452         /// This constructor sets the iterator to the first undirected edge.
 
   454         /// This constructor sets the iterator to the first undirected edge.
 
   455         UEdgeIt(const BpUGraph&) { }
 
   456         /// UEdge -> UEdgeIt conversion
 
   458         /// Sets the iterator to the value of the trivial iterator.
 
   459         /// This feature necessitates that each time we
 
   460         /// iterate the undirected edge-set, the iteration order is the 
 
   462         UEdgeIt(const BpUGraph&, const UEdge&) { } 
 
   463         /// Next undirected edge
 
   465         /// Assign the iterator to the next undirected edge.
 
   466         UEdgeIt& operator++() { return *this; }
 
   469       /// \brief This iterator goes trough the incident undirected 
 
   472       /// This iterator goes trough the incident undirected edges
 
   473       /// of a certain node
 
   475       /// Its usage is quite simple, for example you can compute the
 
   476       /// degree (i.e. count the number
 
   477       /// of incident edges of a node \c n
 
   478       /// in graph \c g of type \c Graph as follows.
 
   481       /// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
 
   483       class IncEdgeIt : public UEdge {
 
   485         /// Default constructor
 
   487         /// @warning The default constructor sets the iterator
 
   488         /// to an undefined value.
 
   490         /// Copy constructor.
 
   492         /// Copy constructor.
 
   494         IncEdgeIt(const IncEdgeIt& e) : UEdge(e) { }
 
   495         /// Initialize the iterator to be invalid.
 
   497         /// Initialize the iterator to be invalid.
 
   499         IncEdgeIt(Invalid) { }
 
   500         /// This constructor sets the iterator to first incident edge.
 
   502         /// This constructor set the iterator to the first incident edge of
 
   504         IncEdgeIt(const BpUGraph&, const Node&) { }
 
   505         /// UEdge -> IncEdgeIt conversion
 
   507         /// Sets the iterator to the value of the trivial iterator \c e.
 
   508         /// This feature necessitates that each time we 
 
   509         /// iterate the edge-set, the iteration order is the same.
 
   510         IncEdgeIt(const BpUGraph&, const UEdge&) { }
 
   511         /// Next incident edge
 
   513         /// Assign the iterator to the next incident edge
 
   514 	/// of the corresponding node.
 
   515         IncEdgeIt& operator++() { return *this; }
 
   518       /// The directed edge type.
 
   520       /// The directed edge type. It can be converted to the
 
   522       class Edge : public UEdge {
 
   524         /// Default constructor
 
   526         /// @warning The default constructor sets the iterator
 
   527         /// to an undefined value.
 
   529         /// Copy constructor.
 
   531         /// Copy constructor.
 
   533         Edge(const Edge& e) : UEdge(e) { }
 
   534         /// Initialize the iterator to be invalid.
 
   536         /// Initialize the iterator to be invalid.
 
   539         /// Equality operator
 
   541         /// Two iterators are equal if and only if they point to the
 
   542         /// same object or both are invalid.
 
   543         bool operator==(Edge) const { return true; }
 
   544         /// Inequality operator
 
   546         /// \sa operator==(Edge n)
 
   548         bool operator!=(Edge) const { return true; }
 
   550 	/// Artificial ordering operator.
 
   552 	/// To allow the use of graph descriptors as key type in std::map or
 
   553 	/// similar associative container we require this.
 
   555 	/// \note This operator only have to define some strict ordering of
 
   556 	/// the items; this order has nothing to do with the iteration
 
   557 	/// ordering of the items.
 
   558 	bool operator<(Edge) const { return false; }
 
   561       /// This iterator goes through each directed edge.
 
   563       /// This iterator goes through each edge of a graph.
 
   564       /// Its usage is quite simple, for example you can count the number
 
   565       /// of edges in a graph \c g of type \c Graph as follows:
 
   568       /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count;
 
   570       class EdgeIt : public Edge {
 
   572         /// Default constructor
 
   574         /// @warning The default constructor sets the iterator
 
   575         /// to an undefined value.
 
   577         /// Copy constructor.
 
   579         /// Copy constructor.
 
   581         EdgeIt(const EdgeIt& e) : Edge(e) { }
 
   582         /// Initialize the iterator to be invalid.
 
   584         /// Initialize the iterator to be invalid.
 
   587         /// This constructor sets the iterator to the first edge.
 
   589         /// This constructor sets the iterator to the first edge of \c g.
 
   590         ///@param g the graph
 
   591         EdgeIt(const BpUGraph &g) { ignore_unused_variable_warning(g); }
 
   592         /// Edge -> EdgeIt conversion
 
   594         /// Sets the iterator to the value of the trivial iterator \c e.
 
   595         /// This feature necessitates that each time we 
 
   596         /// iterate the edge-set, the iteration order is the same.
 
   597         EdgeIt(const BpUGraph&, const Edge&) { } 
 
   600         /// Assign the iterator to the next edge.
 
   601         EdgeIt& operator++() { return *this; }
 
   604       /// This iterator goes trough the outgoing directed edges of a node.
 
   606       /// This iterator goes trough the \e outgoing edges of a certain node
 
   608       /// Its usage is quite simple, for example you can count the number
 
   609       /// of outgoing edges of a node \c n
 
   610       /// in graph \c g of type \c Graph as follows.
 
   613       /// for (Graph::OutEdgeIt e(g, n); e!=INVALID; ++e) ++count;
 
   616       class OutEdgeIt : public Edge {
 
   618         /// Default constructor
 
   620         /// @warning The default constructor sets the iterator
 
   621         /// to an undefined value.
 
   623         /// Copy constructor.
 
   625         /// Copy constructor.
 
   627         OutEdgeIt(const OutEdgeIt& e) : Edge(e) { }
 
   628         /// Initialize the iterator to be invalid.
 
   630         /// Initialize the iterator to be invalid.
 
   632         OutEdgeIt(Invalid) { }
 
   633         /// This constructor sets the iterator to the first outgoing edge.
 
   635         /// This constructor sets the iterator to the first outgoing edge of
 
   638         ///@param g the graph
 
   639         OutEdgeIt(const BpUGraph& n, const Node& g) {
 
   640 	  ignore_unused_variable_warning(n);
 
   641 	  ignore_unused_variable_warning(g);
 
   643         /// Edge -> OutEdgeIt conversion
 
   645         /// Sets the iterator to the value of the trivial iterator.
 
   646 	/// This feature necessitates that each time we 
 
   647         /// iterate the edge-set, the iteration order is the same.
 
   648         OutEdgeIt(const BpUGraph&, const Edge&) { }
 
   649         ///Next outgoing edge
 
   651         /// Assign the iterator to the next 
 
   652         /// outgoing edge of the corresponding node.
 
   653         OutEdgeIt& operator++() { return *this; }
 
   656       /// This iterator goes trough the incoming directed edges of a node.
 
   658       /// This iterator goes trough the \e incoming edges of a certain node
 
   660       /// Its usage is quite simple, for example you can count the number
 
   661       /// of outgoing edges of a node \c n
 
   662       /// in graph \c g of type \c Graph as follows.
 
   665       /// for(Graph::InEdgeIt e(g, n); e!=INVALID; ++e) ++count;
 
   668       class InEdgeIt : public Edge {
 
   670         /// Default constructor
 
   672         /// @warning The default constructor sets the iterator
 
   673         /// to an undefined value.
 
   675         /// Copy constructor.
 
   677         /// Copy constructor.
 
   679         InEdgeIt(const InEdgeIt& e) : Edge(e) { }
 
   680         /// Initialize the iterator to be invalid.
 
   682         /// Initialize the iterator to be invalid.
 
   684         InEdgeIt(Invalid) { }
 
   685         /// This constructor sets the iterator to first incoming edge.
 
   687         /// This constructor set the iterator to the first incoming edge of
 
   690         ///@param g the graph
 
   691         InEdgeIt(const BpUGraph& g, const Node& n) { 
 
   692 	  ignore_unused_variable_warning(n);
 
   693 	  ignore_unused_variable_warning(g);
 
   695         /// Edge -> InEdgeIt conversion
 
   697         /// Sets the iterator to the value of the trivial iterator \c e.
 
   698         /// This feature necessitates that each time we 
 
   699         /// iterate the edge-set, the iteration order is the same.
 
   700         InEdgeIt(const BpUGraph&, const Edge&) { }
 
   701         /// Next incoming edge
 
   703         /// Assign the iterator to the next inedge of the corresponding node.
 
   705         InEdgeIt& operator++() { return *this; }
 
   708       /// \brief Read write map of the nodes to type \c T.
 
   710       /// ReadWrite map of the nodes to type \c T.
 
   712       /// \todo Wrong documentation
 
   714       class NodeMap : public ReadWriteMap< Node, T >
 
   719         NodeMap(const BpUGraph&) { }
 
   721         NodeMap(const BpUGraph&, T) { }
 
   724         NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
 
   725         ///Assignment operator
 
   726         NodeMap& operator=(const NodeMap&) { return *this; }
 
   727         ///Assignment operator
 
   728         template <typename CMap>
 
   729         NodeMap& operator=(const CMap&) { 
 
   730           checkConcept<ReadMap<Node, T>, CMap>();
 
   735       /// \brief Read write map of the ANodes to type \c T.
 
   737       /// ReadWrite map of the ANodes to type \c T.
 
   739       /// \todo Wrong documentation
 
   741       class ANodeMap : public ReadWriteMap< Node, T >
 
   746         ANodeMap(const BpUGraph&) { }
 
   748         ANodeMap(const BpUGraph&, T) { }
 
   751         ANodeMap(const ANodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
 
   752         ///Assignment operator
 
   753         ANodeMap& operator=(const ANodeMap&) { return *this; }
 
   754         ///Assignment operator
 
   755         template <typename CMap>
 
   756         ANodeMap& operator=(const CMap&) { 
 
   757           checkConcept<ReadMap<Node, T>, CMap>();
 
   762       /// \brief Read write map of the BNodes to type \c T.
 
   764       /// ReadWrite map of the BNodes to type \c T.
 
   766       /// \todo Wrong documentation
 
   768       class BNodeMap : public ReadWriteMap< Node, T >
 
   773         BNodeMap(const BpUGraph&) { }
 
   775         BNodeMap(const BpUGraph&, T) { }
 
   778         BNodeMap(const BNodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
 
   779         ///Assignment operator
 
   780         BNodeMap& operator=(const BNodeMap&) { return *this; }
 
   781         ///Assignment operator
 
   782         template <typename CMap>
 
   783         BNodeMap& operator=(const CMap&) { 
 
   784           checkConcept<ReadMap<Node, T>, CMap>();
 
   789       /// \brief Read write map of the directed edges to type \c T.
 
   791       /// Reference map of the directed edges to type \c T.
 
   793       /// \todo Wrong documentation
 
   795       class EdgeMap : public ReadWriteMap<Edge,T>
 
   800         EdgeMap(const BpUGraph&) { }
 
   802         EdgeMap(const BpUGraph&, T) { }
 
   804         EdgeMap(const EdgeMap& em) : ReadWriteMap<Edge,T>(em) { }
 
   805         ///Assignment operator
 
   806         EdgeMap& operator=(const EdgeMap&) { return *this; }
 
   807         ///Assignment operator
 
   808         template <typename CMap>
 
   809         EdgeMap& operator=(const CMap&) { 
 
   810           checkConcept<ReadMap<Edge, T>, CMap>();
 
   815       /// Read write map of the undirected edges to type \c T.
 
   817       /// Reference map of the edges to type \c T.
 
   819       /// \todo Wrong documentation
 
   821       class UEdgeMap : public ReadWriteMap<UEdge,T>
 
   826         UEdgeMap(const BpUGraph&) { }
 
   828         UEdgeMap(const BpUGraph&, T) { }
 
   830         UEdgeMap(const UEdgeMap& em) : ReadWriteMap<UEdge,T>(em) {}
 
   831         ///Assignment operator
 
   832         UEdgeMap &operator=(const UEdgeMap&) { return *this; }
 
   833         ///Assignment operator
 
   834         template <typename CMap>
 
   835         UEdgeMap& operator=(const CMap&) { 
 
   836           checkConcept<ReadMap<UEdge, T>, CMap>();
 
   841       /// \brief Direct the given undirected edge.
 
   843       /// Direct the given undirected edge. The returned edge source
 
   844       /// will be the given node.
 
   845       Edge direct(const UEdge&, const Node&) const {
 
   849       /// \brief Direct the given undirected edge.
 
   851       /// Direct the given undirected edge. The returned edge
 
   852       /// represents the given undirected edge and the direction comes
 
   853       /// from the given bool.  The source of the undirected edge and
 
   854       /// the directed edge is the same when the given bool is true.
 
   855       Edge direct(const UEdge&, bool) const {
 
   859       /// \brief Returns true when the given node is an ANode.
 
   861       /// Returns true when the given node is an ANode.
 
   862       bool aNode(Node) const { return true;}
 
   864       /// \brief Returns true when the given node is an BNode.
 
   866       /// Returns true when the given node is an BNode.
 
   867       bool bNode(Node) const { return true;}
 
   869       /// \brief Returns the edge's end node which is in the ANode set.
 
   871       /// Returns the edge's end node which is in the ANode set.
 
   872       Node aNode(UEdge) const { return INVALID;}
 
   874       /// \brief Returns the edge's end node which is in the BNode set.
 
   876       /// Returns the edge's end node which is in the BNode set.
 
   877       Node bNode(UEdge) const { return INVALID;}
 
   879       /// \brief Returns true if the edge has default orientation.
 
   881       /// Returns whether the given directed edge is same orientation as
 
   882       /// the corresponding undirected edge's default orientation.
 
   883       bool direction(Edge) const { return true; }
 
   885       /// \brief Returns the opposite directed edge.
 
   887       /// Returns the opposite directed edge.
 
   888       Edge oppositeEdge(Edge) const { return INVALID; }
 
   890       /// \brief Opposite node on an edge
 
   892       /// \return the opposite of the given Node on the given UEdge
 
   893       Node oppositeNode(Node, UEdge) const { return INVALID; }
 
   895       /// \brief First node of the undirected edge.
 
   897       /// \return the first node of the given UEdge.
 
   899       /// Naturally undirected edges don't have direction and thus
 
   900       /// don't have source and target node. But we use these two methods
 
   901       /// to query the two endnodes of the edge. The direction of the edge
 
   902       /// which arises this way is called the inherent direction of the
 
   903       /// undirected edge, and is used to define the "default" direction
 
   904       /// of the directed versions of the edges.
 
   906       Node source(UEdge) const { return INVALID; }
 
   908       /// \brief Second node of the undirected edge.
 
   909       Node target(UEdge) const { return INVALID; }
 
   911       /// \brief Source node of the directed edge.
 
   912       Node source(Edge) const { return INVALID; }
 
   914       /// \brief Target node of the directed edge.
 
   915       Node target(Edge) const { return INVALID; }
 
   917       /// \brief Base node of the iterator
 
   919       /// Returns the base node (the source in this case) of the iterator
 
   920       Node baseNode(OutEdgeIt e) const {
 
   924       /// \brief Running node of the iterator
 
   926       /// Returns the running node (the target in this case) of the
 
   928       Node runningNode(OutEdgeIt e) const {
 
   932       /// \brief Base node of the iterator
 
   934       /// Returns the base node (the target in this case) of the iterator
 
   935       Node baseNode(InEdgeIt e) const {
 
   938       /// \brief Running node of the iterator
 
   940       /// Returns the running node (the source in this case) of the
 
   942       Node runningNode(InEdgeIt e) const {
 
   946       /// \brief Base node of the iterator
 
   948       /// Returns the base node of the iterator
 
   949       Node baseNode(IncEdgeIt) const {
 
   953       /// \brief Running node of the iterator
 
   955       /// Returns the running node of the iterator
 
   956       Node runningNode(IncEdgeIt) const {
 
   960       void first(Node&) const {}
 
   961       void next(Node&) const {}
 
   963       void first(Edge&) const {}
 
   964       void next(Edge&) const {}
 
   966       void first(UEdge&) const {}
 
   967       void next(UEdge&) const {}
 
   969       void firstANode(Node&) const {}
 
   970       void nextANode(Node&) const {}
 
   972       void firstBNode(Node&) const {}
 
   973       void nextBNode(Node&) const {}
 
   975       void firstIn(Edge&, const Node&) const {}
 
   976       void nextIn(Edge&) const {}
 
   978       void firstOut(Edge&, const Node&) const {}
 
   979       void nextOut(Edge&) const {}
 
   981       void firstInc(UEdge &, bool &, const Node &) const {}
 
   982       void nextInc(UEdge &, bool &) const {}
 
   984       void firstFromANode(UEdge&, const Node&) const {}
 
   985       void nextFromANode(UEdge&) const {}
 
   987       void firstFromBNode(UEdge&, const Node&) const {}
 
   988       void nextFromBNode(UEdge&) const {}
 
   990       template <typename Graph>
 
   993 	  checkConcept<IterableBpUGraphComponent<>, Graph>();
 
   994 	  checkConcept<MappableBpUGraphComponent<>, Graph>();